Minerals
in a Family of Asteroids Reveal Martian Roots
Mars Trojan asteroids, which travel along the
planet's orbital path around the Sun, are not quite like those that populate
the asteroid belt between Mars and Jupiter. In a new paper published in the
journal Nature
Astronomy,
researchers at the Weizmann Institute of Science in Israel and the Observatoire de la Cote d'Azur in France are proposing a
new and unique origin for these asteroids - showing they were most likely born
in a giant impact with the Red Planet.
There are a great number of
asteroids in our solar system, especially in the region known as the asteroid
belt. These objects are generally assumed to be leftovers from the solar
system's formation that did not manage to form a planet. Mostly, it has been
presumed that the Mars Trojans were rocks from the asteroid belt that had
wandered into particular places within the path of Mars's orbit known as the
Lagrange points - unusual positions in which objects remain locked into the
orbit of a planet.
To investigate the origins of the seven asteroids
in one of Mars's Lagrange points, Dr. David Polishook,
a postdoctoral fellow in Prof. Oded Aharonson's group in the Weizmann Institute of Science, and
Dr. Seth Jacobson of the Observatoire de la Cote
d'Azur first used the SpeX instrument on the IRTF
telescope in Hawaii to spectrally infer their composition. 'Our observations
showed that all these asteroids are rich in a mineral known as olivine,
implying they are all related. They represent a family with a single common
origin,' says Polishook.
Olivine-rich asteroids are rare in the asteroid
belt; this mineral generally forms deep within the mantles of much larger
planetary bodies such as Earth and Mars, where pressures are high.
To explain this finding, Polishook
and his colleagues suggested that the Trojan asteroids had not originally
formed along with the rest of the asteroid belt. The most likely explanation
for the asteroids being both rich in olivine and locked in one of Mars's
Lagrange points is that they were excavated from deep within Mars and ejected
into orbit by a giant impact.
To test this hypothesis, the scientists developed a
computer simulation that shows how such an impact could have created the
asteroids and how they may have been captured in their particular Lagrange
point in the orbital path of Mars. 'For the first time,' says Polishook, 'we were able to draw a link between specific
asteroids and a planetary source. Now that we know such objects exist, the next
step is to investigate their abundance and study their characteristics.'
'Since
olivine comes from the planetary mantle beneath the outer surface, the material
in these asteroids could provide a unique opportunity to study the inner makeup
of Mars,' adds Aharonson. 'They may serve as targets
for future exploration; sampling them could prove more feasible than retrieving
material from Mars itself.'
General media covering our study:
Sky & Telescope: Source of Mars Trojans might be Mars itself.
Space.com: Are Mars' Trojan asteroids pieces of the red planet?
Jerusalem Post: Israeli and French scientists find Martian roots in asteroid
family.
Popular Mechanics: Enormous impact on Mars could have created mysterious group
of asteroids.