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Abstract-This work presents evidence for a second stage of spatial filtering in early vision. This second 
stage operates on the output of the well known linear spatial filters and integrates their thresholded 
responses with a center-surround weighting function. The evidence for the existence of this second stage 
comes from experiments where observers have to detect a Gabor signal with known parameters (target) 
among a varied number of other Gabor signals having orthogonal orientation (distracters). Detection 
performance on this task depends on the number of distracters and the distance between them: when the 
number of distracters is small performance deteriorates with an increasing number of distracters; however, 
when the number of distracters becomes larger performance improves with an increasing number of 
distracters. This improvement depends on the spatial-frequency of the signals and their spatial separation. 
Best performance is achieved when the spatial separation between signals is larger than three times their 
center wavelength but smaller than nine times their wavelength, implying a second stage filtering with a 
center size of six wavelengths and a total size of 18 wavelengths. This second stage of filtering may underlie 
our ability to detect certain texture boundaries preatentively. 
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INTRODUCTION 

Early visual processing stages seem to involve 
spatial-temporal filtering by a variety of linear 
filters. It has been suggested that their responses 
produce a compact representation of the input 
image (Daugman, 1985; Watson, 1983). These 
filters are sensitive to luminance variation across 
space on different scales, thus occupying a lim- 
ited area in the spatial-frequency domain as well 
as in retinal space. Our ability to model the 
visual system that way stems from contrast 
detection experiments (Campbell & Robson, 
1968; Graham & Nachmias, 1971; Watson & 
Robson, 198 1; Wilson & Bergen 1979), from 
contrast discrimination experiments (Sagi & 
Hochstein, 1983) and from masking exper- 
iments (Dau~an, 1984; Legge, 1979; 
Stromeyer & Julesz, 1972). It is assumed that 
these filters (channels) cover the whole visual 
field and thus process it in parallel (Graham, 
1989; Watson, 1983; Wilson, 1983). However, it 
is not clear whether the information represented 
in this parallel system can be used simul- 
taneously by a higher level decision stage. For 
example, can we compute phase relationships or 
orientation simultaneously across the visual 

field, taking advantage of the large number of 
filters responding to different locations in the 
visual field? Models of detection assume that all 
channels can be monitored simultaneously and 
thus incorporate an assumption of statistical 
(probability) summation across space (Graham 
& Robson, 1987; Wilson & Bergen, 1979) and 
spatial-frequency (Graham & Nachmias, 1971). 
According to this assumption, channel activity 
(whether below threshold or above) is moni- 
tored across the whole visual field by a decision 
stage, thus predicting improved detection 
rate with increasing stimulus area (Graham & 
Robson, 1987). The individual channels that 
produce above threshold responses, do not have 
to be identified, since it is sufficient for the 
decision stage to know that one of the many 
channels crossed its threshold. However, chan- 
nels having different sensitivity curves can be 
labeled according to their most sensitive orien- 
tations and spatial-frequencies. Watson and 
Robson (1981) asked whether the label of 
an individual channel (orientation or spatial- 
frequency) can be identified at contrast detec- 
tion threshold. They found, using localized 
stimuli, that patterns can be identified at 
their detection threshold, thus confirming the 
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labeling hypothesis. In this study we examine 
the ability of the visual system to carry out 
many identification tasks at different locations 
in the visual field. Considering the results from 
search experiments (Bergen & Julesz, 1983a; 
Treisman & Gelade, 1980; Sagi & Julesz, 1985) 
we may expect a failure of parallelism for some 
visual tasks. 

In a search experiment observers are con- 
fronted with the task of detecting the presence 
of a target when the visual field is cluttered with 
a variable number of distracters. Since target 
position is not known, all displayed items 
(target and distracters) have to be processed at 
least to the degree of being discriminable (as 
pointed out by Duncan, 1985). The interesting 
variable is usually detection time, as measured 
by reaction time (Treisman &I Gelade, 1980) or 
by error rate when stimulus processing time is 
limited by backward masking (Bergen & Julesz, 
1983a; and see Methods section below). In 
general, detection time increases with increasing 
number of distracters unless the target differs 
from the distracters by a simple feature (orien- 
tation, size, color etc). In this latter case search 
is said to be carried out in parallel across the 
visual field, or preattentively. When a target 
differs from the distracters in the way their 
features are combined (spatial-relations between 
line segments as in T vs L, or conjunctions of 
features), preattentive detection fails and an 
attentive serial search is observed (Bergen & 
Julesz, 1983a; Treisman & Gelade, 1985). These 
findings raise two interesting issues: (a) what are 
the basic elements (features, channels) of pre- 
attentive vision? Do they agree with the known 
spatial channels? (b) what is the mechanism that 
enables parallel selection of a target embedded 
in a field of distracters? 

As for the first issue, the list of preattentive 
features (textons) includes orientation, color, 
size, direction of motion and eye-disparity 
(Bergen & Julesz, 1983b; Dick et al., 1987; 
Nakayama & Silverman, 1986; Treisman & 
Gelade, 1980). Some other spatial features as 
line-crossings (Bergen & fulesz, 1983a) and ter- 
minators (Julesz, 198 1; Treisman, 1985) are less 
obvious (Gumsey & Browse, 1987; Kriise, 
1987). A major problem here is the absence of 
a quantitative definition of features. Altema- 
lively, the spatial filtering approach offers a 
measurable set of “features” that is general 
enough to be used for modeling human per- 
formance (Beck, Sutter & Ivry, 1987; Bergen 
& Adelson, 1988; Caelli & Moraglia, 1985; 

Daugman, 1987; Fogel & Sagi, 1989; Landy 6t 
Bergen, 1989; Malik & Perona, 1990; Noth- 
durft, 1988, 1990; Rubenstein & Sagi, 1990; 
Turner, 1986; Voorhees & Poggio. 1988; but see 
Julesz & KrGse, 1988). However, in its simplest 
form (discrimination is based on differences 
between averaged responses) the spatial filtering 
approach cannot account for some interesting 
cases such as terminator based discrimination 
(Fogel & Sagi, 1989). It was shown that this 
problem can be resolved by considering the 
variations of filter responses across space and 
orientation, taking into account the combined 
filter selectivity for space/orientation/spatial- 
frequency (Rubenstein & Sagi, 1990). Such a 
combined selectivity is consistent with the 
findings of Caelli and Moraglia (1985) who 
found enhancement in texture segregation tasks 
when figure differed from ground by both 
spatial-frequency and orientation. 

The strong interdependence between spatial- 
frequency and orientation is a basic property of 
spatial filters. More than that, these two dimen- 
sions seem to be inseparable (Daugman, 1984). 
Thus, if spatial-frequency/o~entation channels 
are available for preattentive vision, we may 
expect preattentive detection of a target that 
differs from distracters in the way spatial- 
frequency and orientation are combined. On the 
other hand, it is possible that preattentive vision 
operates at some higher processing level where 
orientation and spatial-frequency are encoded 
by separate units and thus their combinations 
are not readily accessible (Treisman, 1985; 
Walters, Biederman & Weisstein, 1983). Exper- 
imental evidence (Sagi, 1988) seems to favor the 
first option, thus indicating that preattentive 
vision operates at a processing level where 
spatial-frequency and orientation are not 
encoded separately. 

The second issue concerns the mechanism 
that enables parallel detection of a target em- 
bedded in an array of distractor. One way to 
solve this problem is by postulating a processing 
stage where different features are being repre- 
sented separately (feature maps) and the detec- 
tion of a target having a unique feature is 
performed by looking for total (global) activity 
at the corresponding map (Treisman, 1985). If 
distracters and targets activate different maps, 
detecting activity in the target map is not influ- 
enced by the presence of distracters and their 
number. Thus preattentive vision is assumed 
to operate in feature space (Barlow, 1981) 
without having access to spatial information 



Fig. I, Typical stimuli used in the experiments using 7 x 7 displays with different signal (distractor) 

densities: 12% (a), 50% (b) and 100% in (c). The mask frames(d) had always 100% density. The observers 

had to detect the presence of the vertical patch in (a). (b) or fc). In the 3 x 3 displays only the even rows 

and columns were used. thus doubling the inter-signal spacing. Stimulus contrast is enhanced here for 

demonstration clarity. 
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or to specific iocations (Treisman & Gelade, 

1980). 
Another way to model the preattentive system 

is by assuming a mechanism that detects local 
differences in some feature maps where targets 
and distracters are mapped according to their 
spatial locations (Fogel & Sagi, 1989; Landy & 
Bergen, 1989). In this case, preattentive detec- 
tion is possible only if the target generates a 
strong local difference signal in comparison with 
local difference signals generated by the distrac- 
tors (Ru~nstein & Sagi, 1990; Sagi, 1988). It 
was found that local differences generated by 
targets of different orientations cannot be dis- 
criminated preattentively (Sagi & Juiesz, 1985, 
1987; Braun & Sagi, 1990). For example, the 
orientation of two Gabor signals (presented in 
different regions of an otherwise empty visual 
field) cannot be identified simultaneously 
(Braun & Sagi, 1990) and there are also experi- 
mental results which show a slow down in 
detection of local color differences in the pres- 
ence of shape differences (and vice versa, Pash- 
ler, 1988; Wertheim, 1981). On the other hand, 
shape and color local differences can be detected 
in parallel (Arguin & Cavanagh, 1988) and local 
feature differences can be localized preatten- 
tively (Sagi & Julesz, 1985). Thus we can assume 
that all local difference signals are combined 
according to their spatial location, regardless of 
their -label (orientation, color etc.). This scheme 
relies heavily on experimental results showing 
strong dependence of preattentive detection on 
inter element (targets and distracters) distance. 
Detection of feature differences (orientation of 
line segments) was found to improve with in- 
creasing elements density, both in texture dis- 
crimination tasks (Nothdurft, 1985) and in 
search tasks (Sagi & Julesz 1987). The exper- 
iments reported here extend these latter findings 
to stimuli consisting of elements that are limited 
in their spatial-frequency content. 

The aim of this work is to generate some data 
base that will make it possible to model the 
somewhat higher level phenomena (detection of 
feature differen~s) that are revealed in the 
texture and search experiments, making use of 
known low-level properties of the visual system, 
Accordingly, the experiments described here are 
very similar to those performed by Sagi and 
Julesz (1987) with the main difference of using 
patterns which are band-limited in the spatial- 
frequency domain and the space domain, thus 
probably stimulating a small number of spatial 
filters (channels). The visual task used is the 

detection of a vertical target in the presence of 
horizontal distracters (serving as noise). Typical 
stimuli are depicted in Fig. l(a-c) demonstrat- 
ing different distracters’ densities. The basic 
phenomenon explored here is the improvement 
in target detection as distracters’ density is 
increased. The use of similar experimental 
design comes as an attempt to bridge a 
gap between search experiments and standard 
contrast detection/discrimination experiments. 

The main finding of Sagi and Julesz (1987) is 
that detection of the presence of a line segment 
target among line segment distracters of orthog- 
onal orientation is not monotonically related to 
the number of distracters. When the number of 
distracters is small and the distance between any 
two elements in the visual field is large, perform- 
ance declines with increasing number of distrac- 
tors; however, above some critical distractor 
number (density) performance improves with 
increased number of distracters. A reasonable 
assumption is that only the latter phase relates 
to parallel processes engaged in the detection of 
the target, while the first phase (few distracters, 
large distances) relates to a serial scan over the 
isolated distracters and target. While in this 
article the main emphasis is on the parallel 
stage, there is accumulating evidence for serial 
processing in the low density case (Braun & 
Sagi, 1990). The experiments reported here ex- 
plore a wider range of constraints on the parallel 
phase, mainly its dependence on the frequency 
content of the patterns distributed across space 
and on their spatial configuration. The result 
is a more comprehensive description of the 
mechanism underlying detection of feature 
differences (over short range). 

The theoretical framework adopted here is 
the one used by Fogel and Sagi (1989) for 
modeling texture segregation processes. The 
model has two filtering stages. Filters of the first 
stage are standard spatial-frequency/orientation 
selective filters and those of the second stage are 
spatial-frequency but not orientation selective. 
A second stage filter, termed here hyper-filter, 
receives input from filters having the same 
parameters except for spatial location and 
phase. (This latter assumption accounts for 
the phase insensitivity of preattentive vision, 
Rentschler & Treutwein, 1985.) A hyper- 
filter can be viewed as a Laplacian-Gaussian 
linear operator operating on the squared (or 
thresholded) output of the first stage linear 
filters. Taking the difference of Gaussian (DOG) 
approximation to the Laplacian of Gaussian, a 



hyper-filter can be be characterized by two space 
parameters: excitatory and inhibitory (reflecting 

the standard deviations of the two Gaussians). 
The first parameter specifies the range of inte- 
gration of the filter’s output (amount of spatiai 
blur introduced into the filter response map) 
and the second specifies the range over which 
feature differences can be detected by a hyper- 
filter. It is assumed thar detection of feature- 
gradients is mediated through hyper-filters. In 
cases of uniform textures, hypes--filters will show 
weak responses that may correspond to texture 
local variability (attenuated by hyper-filter 
blur), however, the introduction of a different 
feature (or feature singula~ty) will yield a strong 
hyper-filter response. In cases of sparse textures 
(large inter-elements spacing), responses to tex- 
ture local variations (between texture elements 
and background luminance) may compete with 
responses to feature singularities. In search 
tasks this may occur when only a small number 
of distracters are present and the inter-distrac- 
tor distance is larger than the inhibitory space 
constant of the hyper-filter. Parallel target 
detection may then fail and attentive search 
may be necessary to resolve the hyper-filter 
response ambiguity. In addition, the hyper- 
filter response level may depend on how much 
of the hyper-filter integration area is covered by 
the target. Thus, for the task used here, detec- 
tion of a vertical Gabor signal in the presence of 
horizontal Gabor signals, detection rate may 
depend on target size relative to its hyper-filter 
summation area and on signal density. 

METHODS 

~lirn~~us generarion 

The stimuli (see Fig. 1) were displayed on the 
face of a Conrac video monitor, with an average 
luminance of 100 cd/m*, using an Imaging Tech- 
nology frame buffer with a 256 x 256 pixels 
resolution at a frame rate of 50 Hz (noninter- 
laced). Stimulus generation and display was 
controlled by a SUN-2 work-station, using a 
special frame-buffer driver for stimulus timing 
control. The stimuli consisted of an array of 
Gabor patches, each patch occupying 32 x 32 
pixels, where the Gaussian envelope had a 
spread of 16 pixels between i/e points (see 
Fig. I). The Gaussian envelop was modulated 
by a cosine function with a variable wave length 
between 4 and 32 pixels. The stimulus array was 
divided into 7 x 7 cells or 3 x 3 cells depending 
on the experiment, in order to control the 

minimal distance between the patches, Accord- 
ingly. the number of patches presented in each 

stimulus varied between I and 49 or I and 9. The 
position of the patches was randomized around 
each grid position within a range of 6 pixels. 

We used two viewing distances of 180 and 

80 cm, thus the stimulus occupied an area of 
8 x 8 of I8 x 18deg respectively. The Gabor 
patch size rhen was I or 2.3 deg and the inter 
patch separation was I (7 x 7 grid) or 2 deg 
(3 x 3 grid) at the longer viewing distance and 
2.3 (7 x 7 grid) or 4.6deg (3 x 3 grid) at the 
shorter viewing distance. Targets (to be defined 
later) were positioned in somewhat more 
restricted area, in order to keep their distance 
from fixation point near constant. They were 
placed on the sides of a square with dimensions 
of 4 x 4 (large viewing distance) or 9.2 x 9.2 deg 
(small viewing distance) centered at the fixation 
point. 

Stimulus presenrarion 

The stimuli were presented for 40 msec (see 
Fig. 2), thus preventing the possibility of more 
than one fixation during the exposure, though 
certainly visual persistence was longer. We 
limited the “processing time” available to the 
observer by masking the stimuli with a full 

screen of Gabor patches (7 x 7 or 3 x 3 as 
defined above), each of them generated as a 
superposition of the target patch and the dis- 
tractor patch with a total contrast of 100% and 
100 msec presentation time. In addition, the 
relative position (phase) between mask element 
and stimulus elements was randomized (due to 
jitter in positioning the elements). As a result of 
the high mask energy (contrast and duration) 
and its inconsistent relationship with the stimu- 
lus, the task of detecting the target proved to be 
impossible at some small SOA (Stimulus Onset 
Asynchrony). At these SOAs stimulus and mask 
were probably superimposed perceptually by 
visual persistence. 

Target and distracters had the same contrast, 
ranging from 15 to 60% (defined as the ratio of 

Stimulus 

+soAw 
TIME - 

Fig. 2. The temporal sequence of stimulus and mask presen- 
tation on each trial. The dispIay luminance was kept con- 
stant, stimulus andmask were defined by contrast where the 
mask contrast always 100% and the stimulus contrast was 
adjusted for each observer and spatiaLfrequency separaftiy. 
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the cosine amplitude to the average luminance, 
thus reflecting the actual contrast only at the 
center of the Gabor patch). The relatively large 
range of contrasts used reflects the dependence 
of observers’ sensitivity on spatial-frequency. 
Contrast was adjusted so that observers’ per- 
formance at the lowest density .used (a single 
target or distractor) was around 90% correct at 
SOA of 60-80 msec. 

Screen luminance did not deviate from the 
expected linear relationship to the input signal 
by more than 5%. Stimulus patterns were digi- 
tized using 256 gray levels. 

Psychophysical procedure 

In all experiments the observer had to detect 
the presence of a Gabor patch with vertical 
orientation (target) among other patches with 
horizontal orientation (distracters). Between 
each block of 50 trials the average number of 
distracters was varied and within each block the 
probability of each grid position having a dis- 
tractor (distractor density) was kept constant: 0, 
0.12, 0.25, 0.5, 0.75 or 1.0, with the exception 
that for zero density one distractor was pre- 
sented in trials without a target. A target was 
presented on about half of the trials (probability 
of 0.5 per trial). The observer had to respond 
0 for target absence or 1 for the presence of a 
target, using the computer terminal keyboard. 
Detection rates were calculated as the average of 
the correct response rates of the two alternatives 
(target and no-target) in order to eliminate 
subjective preference toward one alternative or 
the other which in any case was not signi~cant). 
Each session lasted l-l.5 hr. 

Observers 

Four observers participated in these exper- 
iments, all of them having normal or corrected 
to normal vision. One of the four observers was 
the author (DS), while the others were unaware 
of the purpose of the experiments. All observers 
were well practiced in the experiments reported 
here; observers usually had lower performance 
in the initial phase of the expe~ments, but later 
they reached a constant level of performance. 
Only the latter phase was used in the data 
analysis. Observers were tested on 100-500 trials 
for each data point. 

RESULTS 

The first result of interest here is the depen- 
dence of target detection rate on the density (or 

number) of distracters. Results for the 7 x 7 cell 
array with small minimal inter-patch spacing for 
far and close viewing conditions are depicted in 
Figs 3 and 4 respectively, where in each figure 
data for three different spatial-frequencies are 
presented. The first point to note is that all 
curves show a decline in performance as the 
number of distracters increases, this initial 
decline can be from almost perfect performance 
to close to chance performance in some cases. 
However, some curves show an increase in 
performance when the distractor density is fur- 
ther increased, slowly reaching a maximal per- 
formance level at 100% distractor density. This 
maximal performance is sometimes equal to the 
performance at zero density. 

It can be seen that curves showing an increase 
in performance as signal density increases are 
obtained from experiments using high spatial 
frequency Gabor signals. The transition seems 
to be around 2 c/deg in our case. We wanted to 
see whether the critical frequency for high den- 
sity increase depends on other spatial par- 
ameters of the image as the minimal spacing 
between patches. Thus we ran experiments using 

60 

60 

50 

0 40 60 0 40 60 0 40 60 

Signal density (%) 

Fig. 3. Dependence of detection performance on patch 
density at three different spatial-frequencies (two observers). 
Stimulus size is 8 x 8 deg and target eccentricity is 2.5 deg on 
average. At 100% signal density the stimulus contained 49 
signals arranged on a 7 x 7 grid with I deg spacing. The 
error bars represent averaged standard errors. Note the 
difference between the low-frequency and the high-fre- 

quency curves. 
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sparser grids having only 3 x 3 locations and 
varied the number of distracters from 1 to 9 as 
the density was changed from 0 to 100%. 
Results are depicted in Fig. 5. The main point 
to note is that performance, on high spatial 
frequency stimuli, does not show a strong im- 
provement as signal density is increased. This 
latter improvement is still evident in the medium 
frequency data. On the other hand, the low fre- 
quency data show some increase in performance 
when signal density is increased. This later result 
demonstrates that large inter-element spacings 
improves parallel detection of low-frequency 
Gabor signals. 

In order to quantify the “efficiency” of paral- 
lel detection in our experiments, we can define 
an arbitrary measure taking into account the 
increase in performance toward higher densities. 
One way to describe this increase is to take the 
difference between performance at 100% den- 
sity and the minimal performance (over all 
densities) and to scale it with the initial decrease 
from 0% density to the mimimal performance 
point. Thus PR =(P,,- P,l,)/(P,,- PM). 
PR = 0 means that the performance at high 
density is equal to the minimal performance, 
thus there is no high density increase, while 
PR = 1 means that the high density increase is 

w=l.lcQd w*l.7cpd W’3.4cpd 

60 Amg. hQ WaO.6 0.3 -027 
IIll II1I1 1I1II 

0 40800408004080 

SIGNAL MNSITY W.) 

c DS SDA 40 mwc Ea. 5.9. 
ID0 T T 

SIGNAL DENSITY f%) 

Fig. 4. The same as Fig. 3 but with stimuli scaled up to a 
size of 18 x 18 deg with 2.3 deg signal separation. Target 

average eccentricity is 5.9 deg. 

I,,,, ,,I,, I,,,, 
‘O”- (a) OS SOA = 60 msrc E: I 2 5’ 

go- t, I : 

- w = 1 CQd . . W * 2.6CQd 
I w.s.3cQd _ 

50_ AmP.0.3 ., Amp*O.3 Amp ‘0.4 _ 

,I,,, ,,I,, I,,,, 
0 40 SO 0 40 SO 0 40 SO 

SIGNAL DENSITY (X) 

MP SOA = 60 mw Ex r 5.9O 

SIGNAL OENSITY (Xl 

Fig. 5. The same as Fig. 3 (a) and Fig. 4 (b) but using a 3 x 3 
patch stimuli with 2deg (a) or 4.6dcg (b) patch spacing. 

Note the change in the high-frequency region. 

equal to the low density decrease. In general, PR 
can be larger than one but this is rarely observed 
in the data. The case PO = P,,,,, is never observed 
in the present experiments so practically PR is 

quite well defined. The dependence of PR on 
spatial frequency is depicted in Fig. 6 for two 
separations and two eccentricities. The graphs 
confirm the observation made above: for the 
small patch separation parallel detection im- 
proves with increasing the patch spatial fre- 
quency, thus producing best performance in the 
high spatial-frequency range, while at the larger 
separation best performance is obtained for 
medium spatial-frequencies. At these medium 
spatial-frequencies the large separation PR is 
larger than the small separation PR. Thus 
reducing patch separation can reduce the 
efficiency of parallel detection. This phenom- 
enon may be a result of lateral masking between 
the target and the distracters, and is expected if 
filter size is larger than signal size. 

It should be pointed out that the patch size 
(controlled by its Gaussian standard deviation) 
is the same for small and large separations and 
that separation is measured between center of 
patches, thus effective separation is probably 
smaller. This bias is larger in the small separ- 
ation case where the Gaussian spread is half the 
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separation (the larger separation is four times 
the Gaussian spread). In addition a constant 
gaussian spread implies increasing orientation 
bandwidth with decreasing spatial frequency. 
Thus, for the low spatial frequencies ( < 2 c/deg) 
some overlap in the orientation spectrum is 
expected between the vertical and the horizontal 
patches (and both of them contain a d.c. compo- 
nent). The single target (density = 0) o~entation 
resolution was kept constant (90”!4 correct) for 
all frequencies, but if filter and/or hyper-filter 
integration area for the signals is larger than 
one or two cycles an interference between 
targets and distracters is expected, resulting a 
reduction in performance for high-density low 
spatial-frequency stimuli. 

According to the data presented in Fig. 6, 
parallel processing efficiency is low for frequen- 
cies below 3/spacing c/deg (for all 8 curves), 
implying an integration radius of 3 cycles. This 
rule seems to hold for all stimuli whether sparse 
(3 x 3) or dense (9 x 9). The 3/spacing rule 
implies an integration area of 6 cycles which can 
be taken as an upper limit on integration (sum- 
mation) area and thus to reflect a hyper-filter 
property. Filter integration area is probably 
smaller and may be about two cycles (Watson, 
Barlow & Robson, 1983). In a similar way, 
efficient parallel processing is limited to spatial 
frequencies below g/spacing c/deg (this estimate 
is based on the large separation data from 
Fig. 6, and is consistent with all the data). The 
g/spacing rule implies a total hyper-filter area of 
18 cycles, including the inhibitory surround. 

In summary, the data clearly show a non- 
monotonic dependence of detection perform- 
ance on signal density. This is evident in the 
increased performance when signal density is 
high, an increase that is much stronger than 
observed before (Sagi & Julesz, 1987). In ad- 
dition, it is demonstrated that this high density 
increase is sensitive to spatial separation in a 
frequency dependent way. 

DISCUs!IION 

Experiments were described showing the 
effect of targets’ spatial distribution on the 
detection of feature differences. It was demon- 
strated that increasing distracters’ density can 
improve target detection dramatically. This im- 
provement was found to be dependent on the 
spatial-frequency of the signals and their spatial 
separation. Best performance was achieved 
when the spatial separation between signals was 

0.6 I 2 4 8 

SPATIAL FREQUENCY fc~dl 

PR 
I. (b) 

8 “‘. OS 

El. 8.F 

SEPARATION E.V . 
4.P 0 

MP 

SPATIAL FREQUENCY (cpd) 

Fig. 6. The dependence of the parameter PR on spatial 
frequency for the two display sizes used 18 x 18 deg (a) and 
8 x 8 deg (b). Closed symbols for dense displays (7 x 7) and 
empty symbols for sparse displays (3 x 3). Note that parallel 
detection efficiency (PR) increases with increasing spatial- 
frequency, however, for large patch separations it reaches a 
maximum at 2 c/deg (a) or at 1 c/deg (b) and then declines 

again. 

larger than three times their center wavelength 
but smaller than nine times their wavelength. 

The data support the idea that the mechanism 
underlying the detection of feature-differences 
operates through local interactions. The range 
of the interactions seems to scale with the 
wavelength of the filters operating in the detec- 
tion task and has a radius of 9 times the filter 
typical wavelength. These interactions may have 
an antagonistic inter-surround organization 
with a center radius of three times the filter 
typical wavelength. The range found here is 
larger than suggested from previous works (Sagi 
& Hochstein, 1985; Sagi & Julesz, 1987). This 
may be a result of the scaling effect found in the 
present study, the longer range interactions are 
due to the low spatial-frequency filters. How- 
ever, it is still possible that these interactions 
have an absolute limit, thus a breakdown of the 
scaling effect may be expected below some 
spatial frequency. Since filter size depends on 
eccentricity (Wilson, 1983) the interaction range 
and limit may depend on eccentricity. Beck and 
Ambler (1973) found parallel performance on 
orientation (of the letter T) detection task for 
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targets and distracters (N = 8) at an eccentricity 
of 18.2 deg with target size of 2.1 deg and 
separation of 13.8 deg. The size/spacing ratio 
(1: 6.6) is well within the integration range found 
here (between I:3 and 1:9), assuming that 
the T’s are best detected by filters having 
wavelength corresponding to the T’s size. (The 
assumption of low-frequency based detectability 
for alphanumeric kind of targets in brief dis- 
plays seems to work in other cases as examined 
by Fogel & Sagi, 1989.) Previous studies that 
examined the role of element spacing used only 
line segments and thus there is no trivial scale 
for evaluation of optimal detection filter. How- 
ever, since a filter wavelength larger than line 
length gives poor orientation sensitivity, line 
length can be taken as an upper limit on filter 
wavelength involved in the detection process. 
Line length was found to interact with spacing 
in determining texture discrimination perform- 
ance (Nothdurft, 1985). The length/spacing 
ratio obtained by Nothdurft (1985) as an upper 
limit on texture discrimination were around 2 :7, 
while Sagi and Julesz (1987) using a search task 
obtained an upper limit of 2: 5. These ratios are 
on the lower end of the efficient range found 
here. It should be noted that the criteria for 
efficient parallel processing taken here is some- 
what high, some of the low efliciency cases show 
a behavior that is usually taken as an evidence 
for parallel processing (Bergen & Julesz, 1983a). 
The term super-parallelism may be better suited 
for the phenomenon explored here. 

The present results are consistent with a 
visual system organized hierarchi~lly. In this 
hierarchy the first layer, composed of known 
spatial filters (spatial-frequency and orien- 
tation), is followed (after a nonlinearity) by a 
second layer that receives inhibitory and excita- 
tory inputs from cells in the first layer according 
to a spatially antagonistic center-surround 
weighting function. A cell (hyper-filter) in the 
second layer should receive inputs from cells 
(filters) in the first layer having the same proper- 
ties, except for spatial location (and phase). The 
number of filters feeding into the center of a 
hyper-filter may be estimated based on existing 
estimates of filter sizes. This estimate centers 
around two cycles for a filter (Caelli & 
Moraglia, 1985; Watson et al., 1983), thus ap- 
proximately nine such filters would cover the 
central area of a hyper filter. Activity at the 
hyper-filter level accounts for the experimental 
results showing parallel detection of feature 
differences. A second-layer cell (hyper-filter) 

will not respond to a unifo~ texture within 
its receptive field, it will be active only if its 
excitatory and inhibitory inputs are not bal- 
anced, a case which will occur at perceivable 
texture boundaries. Texture boundaries created 
by more than one feature difference will be 
signaled by more than one type of hyper-filter; 
however, for automatic detection of texture 
boundaries it is sufficient to detect any activity 
at the hyper-field level. Note that texture 
uniformity should be defined with respect to 
the support of hyper-fiIters in the orien- 
tation/spatial-fr~uency/s~~ domain. Thus, 
textures generated by replicating texture ele- 
ments while randomizing their orientation are 
not uniform (in general) and may give rise 
to spurious texture boundaries. This scheme 
accounts very well for known search and texture 
segregation data (Fogel & Sagi, 1989; Ruben- 
stein & Sagi, 1990). 

Another alternative account for the present 
data is one that assumes a single layer network 
with mutual excitatory and inhibitory connec- 
tions (Engle, 1974; Grossberg, 1987; Grossberg 
& Mingolla, 1985; Koch & Uflman, 1985; Sagi 
& Hochstein, 1985). According to our data most 
connections should be local, and the network 
may be viewed as a cooperative (over very short 
range) competitive (over somewhat larger 
range) system with spatial filters serving as basic 
units. The single layer scheme differs from the 
double layer hierarchical scheme by using 
feedback connections within the layer. The 
hierarchical scheme uses only feedforward con- 
nections. While there is no clear experimental 
evidence to support one account or the other, 
the two-layer scheme seems to be conceptually 
simpler. 

The suggestion that detection of texture 
differences is performed by local measurements 
is consistent with one by Beck (Beck, 1972; 
Beck, Prazdny & Rosenfeld, 1983) and by Julesz 
(1986), however the present scheme avoids using 
structural elements (in addition to standard 
filters) and grouping operations. Also the detec- 
tion of texture boundaries is not achieved here 
by measuring feature differences on a single 
dimension, like orientation difference, (Beck et 
al,, 1983) or attribute based statistics (Voorhees 
& Poggio, 1988) but by measuring differential 
activity across similar filters. However, the scale 
over which this differential activity is measured 
as implied from the present study, seems to be 
close to the scale used by Voorhees and Poggio 
(1988) and Julesz (1986). 
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It is interesting to compare the experimental 
results obtained here with studies showing that 
the perceived contrast of a region in the visual 
field depends on the contrast in its surrounding 
neighborhood (Chubb, Sperling & Solomon, 
1989; Sagi & Hochstein, 1985). The apparent 
contrast of a grating patch (having a given con- 
trast) is inversely related to the contrast in its 
neighborhood. Chubb et al. (1989) found that 
this induction effect disappears when the sur- 
rounding and test regions have nonoverlapping 
spatial frequency spectra. They suggested that 
the response of each spatial filter is normalized 
relative to the responses of nearby filters of the 
same type, at a stage earlier to determination of 
apparent lightness (or contrast). Examination of 
the displays used here (Fig. 1) may suggest that 
if this normalization takes into account only 
responses of filters having similar orientation 
sensitivity, target and distracters will have 
different apparent contrast. The filter respond- 
ing to the vertical Gabor signal will be normal- 
ized relative to its neighboring filters which are 
not stimulated. However, filters responding to 
horizontal Gabor signals will be normalized 
relative to a variable neighborhood activity, 
which depends on signal density. At low density 
of Gabor signals, or at large inter-signal dis- 
tances, the different filters responding to the 
vertical and the horizontal signals will be nor- 
malized in a similar way and thus both targets 
and distracters will give rise to equally perceived 
contrast. Once distractor density is high, the 
normalization of their corresponding filters’ 
response will tend to reduce the apparent con- 
trast of the distracters, but not of the targets. If 
detection is based on apparent contrast only, 
and not on signal orientation, error rate is 
expected to decrease as the number of distrac- 
tors increases (above some critical number). 
This scheme relies on the assumption that the 
target detection process cannot have parallel 
access to filters’ labels, but only to their 
response value (see Introduction). 

Finally, it is not clear what is the role of the 
suggested hyper-filters in object recognition (at- 
tentive vision). According to current views on 
attention feature-differences are detected as cues 
for the presence of objects (separating figure 
from ground), but then attentive vision takes 
over. However, it was shown that location of 
feature differences are available in parallel (Sagi 
& Julesz, 1985) and some shape information is 
available from this information (observers could 
discriminate between triangles defined by three 

feature-gradients at the time these gradients 
were detected). Braun and Sagi (1990) showed 
that information about feature-gradients is 
available without using attention, thus raising 
the possibility that feature-gradients may 
provide a base representation for a recognition 
system that operates concurrently with attentive 
vision. Since hyper-filters provide rich in- 
fo~ation concerning feature and luminance 
gradients they may serve as an input stream to a 
fast mechanism that can identify global proper- 
ties of objects without the temporal limitations 
imposed on attentive vision. 
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