Perceptual learning: learning to see
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Perceptual learning in vision has been found to be highly specific for simple
stimulus attributes, implying highly specific modifications in the nervous
system. The type of specificity found (location, orientation, eye) implied
plasticity at very early stages of visual processing, where processing modules
were believed to be hard-wired and task independent. Recent studies show,
however, that learning is task dependent. Studies examining the time course
of learning indicate that at least two different learning processes are involved
in perceptual learning, reflecting different levels of processing. Perceptual
learning appears to be governed by associative rules and to be constrained
by system architecture.
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Introduction

When a person is asked to perform a visual (or any
other sensory) discrimination task, it is often the case
that they improve with practice, even on very simple
tasks. This improvement occurs without any reinforce-
ment and does not seem to involve conscious effort,
but rather it seems to be controlled by some inher-
ent subconscious process. During the past decade,
perceptual learning has been shown to be involved
in a variety of visual tasks, such as stereoscopic vi-
sion [1,2], gratings detection [3,4], hyperacuity [5,6],
phase discrimination [7], motion detection [8], texture
discrimination [9,10], search [11], and pattern discrim-
ination [12]. Some of these studies showed specificity
of learning for location in the visual field (i.e. what is
learned at one location cannot be used when stimu-
lus is presented at another location) [2,6-8,10,12], for
orientation [1,4,6-8,10], for spatial frequency [7] and
for direction of motion [8]. In some cases, learning
was found to persist for a few weeks without further
practice [7,8].

In this review we will discuss the results from a new
wave of studies, which are providing more insight into
the processes involved in perceptual learning. In par-
ticular, studies on texture segmentation, lateral mask-
ing and hyperacuity are generating interesting results.
Like the earlier studies, these experiments demonstrate
the specificity of learning for stimulus features. How-
ever, learning was also found to be specific for non-
stimulus variables, such as the task used for training,
implying higher level controls over learning. These
studies also demonstrated the existence of two types
of learning, fast (binocular) and slow (monocular). The
slow phase requires a consolidation period of about six
hours, which, when during sleep time, depends on the

integrity of the REM (rapid eye movement) sleep stage.
We will also discuss results from recent lateral masking
experiments, which have been shown to support an as-
sociative learning model for perceptual learning.

Stimulus-driven versus task-driven learning

One important development in understanding percep-
tual learning is the finding that learning involves mod-
ification of the sensory representation in the brain
(10]. Thus, perceptual learning is not only a way of
training attention to pick up distinctive stimulus fea-
tures {13] or of improving sensory processing resulting
from increased alertness [14]. Karni and Sagi [10] stud-
ied learning of orientation-based texture segmentation.
This task is believed to be carried out by a pre-attentive
(parallel across the visual field, bottom-up) stage of vi-
sual processing that detects texture boundaries by com-
paring activities of neighboring local processing units
(filters) selective for basic image features, such as ori-
entation and size [15]. Single-cell recordings show that
texture boundaries are already detectable in cortical
area V1 [16]. In the learning experiment, observers had
to identify the orientation of a small texture region em-
bedded in a background of a different orientation [10].
An additional fixation task was used concurrently with
the texture task to minimize the use of attention [17] in
the segmentation process. Learning was found to be
spatially local (i.e. no transfer of learning between two
retinal locations separated by three degrees), specific
to background orientation and ‘monocular’, thus sup-
porting the idea that learning takes place at a low-level
anatomical site. Monocular learning is difficult to rec-
oncile with the ‘attention’ hypothesis [13], as attentive

Abbreviation
REM—rapid eye movement.
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processes cannot make a selection based on eye-of-ori-
gin information [18].

Ahissar and Hochstein [19*] also used a texture stimu-
lus (the target, however, was only one line segment),
but trained the observers on two different tasks. In one
task, observers had to detect the target (i.e. a line that
was oriented differently from the others), and in the
second task, they had to identify the shape outlined
by the outer borders of the background. The authors
[19°°] found almost no transfer of learning between the
tasks, though the stimuli used were identical in both
tasks. Shiu and Pashler [20] also found that orienta-
tion discrimination does not improve when observers
practice on brightness discrimination using the same
lines as stimuli. It was found, however, that there exists
partial transfer between color discrimination tasks and
vernier acuity tasks, and also between eyes when using
these tasks (P Moiller, T Crabb, AC Hulbert, Perception
1993, 22:37). These results imply that perceptual learn-
ing affects a selected population of sensory processing
units, and that these units are probably selected by at-
tention.

Note that the different tasks involve different low-level
processing units (e.g. brightness discrimination may be
better performed by non-oriented units when target
orientation is not known), and it is possible that the
system selects (or attends to) the most efficient units
for the task in order to optimize performance. As this
optimization amounts to detailed feedback input into
the sensory processing units, it is possible that what
is learned is also the use of feedback. Learning may
take place at all processing stages and, therefore, it may
be possible to study a particular stage by selecting the
right task.

Whereas pre-attentive texture-segmentation tasks
probably probe primary visual areas, attentive search
task may be useful for exploring higher-level stages
of processing. A recent report suggests that learning
an attentive search task is spatially local, but can be
both retinotopic- and object-centered (S Suzuki, P Ca-
vanagh, Invest Ophthal Vis Sci Abstr 1993, 34:1233). It
was also reported that attentive serial search can be-
come parallel after practice, but this practice effect is
not stimulus specific (R Sireteanu, R Rettenbach, Per-
ception 1993, 22:36). So it seems that attentive search
tasks involve some space-invariant, and stimulus-inde-
pendent, learning.

Another related issue is the role of response feedback.
It was found that feedback is not necessary for learn-
ing [8]. Shiu and Pashler [20] compared learning curves
under three conditions: trial-by-trial feedback, block-
by-block feedback and no feedback. They did not
find any significant difference between the first two
conditions. On the third condition, no feedback, ob-
servers did not show much improvement within each
session, but rather improved from one session to the
next. Using a hyperacuity task, Fahle and Edelman
[21°] found that learning without feedback is slightly

slower than with feedback. These findings rule out
any model of learning that is based on detailed su-
pervision — in which the internal response pattern
is compared with an expected one in order to mod-
ify connectivity. It is still possible that observers have
some indication of the correctness of their response
when stimuli are clearly discriminable and, thus, an
internal feedback can be used to speed up learning
[22]. This assumption is supported also by the infor-
mal observation that though observers can perform
well after practice on initialy impossible discrimina-
tion tasks, they can not reach this performance level
unless they are trained first on easy conditions.

Time course of learning

Improvement of performance may take place between
trials, between blocks or between sessions, with time
scales ranging between seconds to hours. It appears
that at least two processes are involved [23*¢]. Ob-
servers practicing on a texture segmentation task [10]
showed an initial fast saturating phase of learning, fol-
lowed by a slow phase where improvement could be
seen between sessions. The fast phase showed interoc-
ular transfer of learning, whereas the slow phase was
found to be monocular, thus implying that two differ-
ent stages of processing are involved in the learning
process. Both stages failed to show learning transfer
across locations and orientations. This new dichotomy
can shed light on the earlier results of Fiorentini and
Berardi [7] on phase discrimination where learning
showed fast saturation (200 trials, within a single ses-
sion) and complete interocular transfer, and of Ball and
Sekuler [8] on motion discrimination where learning
was somewhat slower (34 sessions for saturations)
and interocular transfer was incomplete (74 %).

Retention of texture learning was found to be complete
after 2-3 years [23**}, a new record as compared with
ten weeks for motion discrimination [8], and between
six weeks to six months (partial retention) for phase
discrimination (7).

Karni and Sagi [23°*] also found that between-session
improvement occurs only if the two sessions are sepa-
rated by at least 6-8 hours, suggesting a consolidation
period. Consolidation was found to take place dur-
ing the awake state (normal life activity) and sleep
time. When consolidation occurred during sleep, it
was found to be dependent on the integrity of the
REM sleep stage (A Karni, D Tanne, BS Rubenstein,
JIM Askenasy, D Sagi, Soc Neurosci Abstr 1992, 18:387).
Subjects did not show learning effects when the con-
solidation period was constrained to sleep time and
their REM stage sleep was disrupted, though their nor-
mal performance level on trained tasks was retained.
Slow-wave stage sleep deprivation had only a minor
effect on learning.
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Learning rules

Learning may involve improvement of stimulus—
response connections and/or detection of associations
(correlated activities) within the sensory system. Some
insight into the mechanism of learning comes from lat-
eral masking experiments. Polat and Sagi [24] found
that contrast threshold for an oriented Gabor signal
can be enhanced by positioning two high-contrast
flanking signals (masks) at a distance of about three
times the target wavelength. This enhancement was
found only when the masks were placed in the di-
rection defined by the target orientation or orthogonal
to it (cardinal directions) {25]. Learning experiments
showed that practice can increase the range of these
interactions by a factor of six, but only along the car-
dinal directions [26**]. An increase in the range could
not be obtained by practicing on the large distances
alone, rather, it required practicing with a mixture of
distances, including the small ones. The finding that
different distances have to be processed within the
same session implies that there exists a window of in-
tegration time for the activities of the different neurons
to be detected and associated. ‘Un-learning’ was also
observed when practice was limited to a small range
of distances. Polat and Sagi [26*°] suggested that long-
range interactions are generated via cascades of local
interactions, with local connections being strengthened
or weakened by practice. Learning was suggested to be
limited to connections that already exist in the system
(cardinal directions) and to follow associative (Hebb-
like) rules. According to this theory, activation of two
neighboring units within a short time interval (of a few
minutes) increases the efficacy of their connections Gf
they exist), whereas repetitive activation of one of them
reduces connection efficacy.

Electrophysiological correlates

Though the functional organization of primary sensory
areas was considered to be fixed in the adult primate,
extensive work done in the past decade has revealed
that a great deal of plasticity exists in those areas (for
reviews see [27-30]). Long-term changes in neural re-
sponses can be induced by behavioral training in dif-
ferent sensory modalities. Recanzone, Merzenich and
colleagues {31,32] demonstrated major changes in the
details of the cortical spatio-temporal representation in
monkeys (adult owl) trained to detect tactile stimuli
delivered to a small fixed spot on one finger. Progres-
sive improvement in auditory frequency discrimination
with practice appeared to be accounted for by a par-
allel, progressive change in the region representing
the corresponding frequencies in the primary audi-
tory cortex [33°*]. Weinberger and associates [34,35°]
demonstrated frequency-specific receptive field plas-
ticity in auditory cortical areas by studying classical
conditioning in adult guinea pigs. A recent report sug-
gests Hebb-like rules apply to this type of learning (S]

Cruikshank, NM Weinberger, Soc Neurosci Abstr 1993,
19:164).

Several recent studies show plasticity without behav-
ior. Fregnac, Shulz and colleagues [36,37] describe a
cellular analog of primary visual cortex plasticity. They
induced long-term changes in receptive field selectivity
(for orientation and eye), in anesthetized and paralyzed
cats, by pairing specific stimuli with selective activation
(iontophoretically) of the recorded neuron. Although
these stimuli were not behaviorally significant; driving
the cells iontophoretically probably provided a simu-
lated gating signal. In the primary visual cortex, a
striking increase in receptive field size was observed
after removing visual input by using restricted reti-
nal lesions (long term) [38,39] or after producing an
‘artificial scotoma’ by masking out an area covering
the receptive field of a recorded neuron (short term)
[40]. These visual effects were found in anesthetized
and paralyzed cats. Single-units recordings from ar-
eas MT (medial temporal) and MST (medial superior
temporal) of behaving macaque monkeys showed fast
(300500 trials) sensitivity improvement, and the rate of
improvement correlates with the psychophysical per-
formance (E Zohary, S Celebrini, KH Britten, WT New-
some, Soc Neurosci Abstr 1993, 19:1282). This improve-
ment in neuronal sensitivity could also be obtained by
repetitive stimulus presentation. In a recent study, elec-
trical brain activity (VEP: visual evoked potentials) was
recorded from the occipital areas while the observers
were exposed to vernier stimuli, i.e. no task (M Fahle,
Perception 1993, 22:30). Some specific field potential
configurations appeared after a few hundreds of trials,
presumably correlated with learning observed using
the same stimuli [21¢].

Conclusions

Psychophysical and electrophysiological studies pro-
vide evidence for plasticity of primary sensory areas.
Perceptual learning seems to provide an excellent be-
havioral paradigm for exploring human learning, es-
pecially when coupled with current understanding of
human vision. Perceptual learning was shown to have
two major components: fast (few hundreds of trials)
and slow (days). The fast component seems to affect
higher levels of processing (above the site of binocu-
lar integration), and probably involves top-down pro-
cesses, improving the link between task-dependent
units and sensory units while selecting optimal sen-
sory units for the task. Once these links become ef-
ficient, the task becomes ‘automatic’ (i.e. non-attentive
(17D and performance is then limited by sensory archi-
tecture only. The slow component seems to follow the
fast one and involves low-level processes (monocular)
within primary sensory areas. At this stage, links be-
tween sensory units are strengthened or weakened ac-
cording to their activity correlations, thus establishing
new associations and dissociations. First-order associ-
ations (via one link) are limited to direct connections,
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but higher-order associations are possible by estab-
lishing chains of associations. Thus, although we are
limited by the system architecture in what we can per-
ceive as direct associations, it is possible to perceive
more complex percepts (or concepts) by indirect as-
sociations. Fast learning probably takes place on-line,
when the stimulus is still effective or immediately after,
but slow learning and the consolidation of associations
seem to be performed off-line, for hours after stimulus
presentation while the individual is not aware of the
problem being solved. Though consolidation of asso-
ciations may take place during daytime, it seems that it
also depends on processes that are active during REM
(dream) sleep.
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