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Perceptual learning in vision has been found to be highly specific for simple 

stimulus attributes, implying highly specific modifications in the nervous 

system. The type of specificity found (location, orientation, eye) implied 

plasticity at very early stages of visual processing, where processing modules 

were believed to be hard-wired and task independent. Recent studies show, 

however, that learning is task dependent. Studies examining the time course 

of learning indicate that at least two different learning processes are involved 

in perceptual learning, reflecting different levels of processing. Perceptual 

learning appears to be governed by associative rules and to be constrained 

by system architecture. 

Current Opinion in Neurobiology 1994, 4:195-l 99 

Introduction 

When a person is asked to perform a visual (or any 
other sensory) discrimination task, it is often the case 
that they improve with practice, even on very simple 
tasks. This improvement occurs without any reinforce- 
ment and does not seem to involve conscious effort, 
but rather it seems to be controlled by some inher- 
ent subconscious process. During the past decade, 
perceptual learning has been shown to be involved 
in a variety of visual tasks, such as stereoscopic vi- 
sion 11,21, gratings detection 13,41, hyperacuity 15,61, 
phase discrimination [71, motion detection 181, texture 
discrimination 19,101, search 1111, and pattern discrim- 
ination 1121. Some of these studies showed specificity 
of learning for location in the visual field (i.e. what is 
learned at one location cannot be used when stimu- 
lus is presented at another location) [2,6-&10,121, for 
orientation 11,4,6-&101, for spatial frequency 171 and 
for direction of motion 181. In some cases, learning 
was found to persist for a few weeks without further 
practice 17,Sl. 

In this review we will discuss the results from a new 
wave of studies, which are providing more insight into 
the processes involved in perceptual learning. In par- 
ticular, studies on texture segmentation, lateral mask- 
ing and hyperacuity are generating interesting results. 
Like the earlier studies, these experiments demonstrate 
the specificity of learning for stimulus features. How- 
ever, learning was also found to be specific for non- 
stimulus variables, such as the task used for training, 
implying higher level controls over learning. These 
studies also demonstrated the existence of two types 
of learning, fast (binocular) and slow (monocular). The 
slow phase requires a consolidation period of about six 
hours, which, when during sleep time, depends on the 

integrity of the REM (rapid eye movement) sleep stage. 
We will also discuss results from recent lateral masking 
experiments, which have been shown to support an as- 
sociative learning model for perceptual learning. 

Stimulus-driven versus task-driven learning 

One important development in understanding percep- 
tual learning is the finding that learning involves mod- 
ification of the sensory representation in the brain 
1101. Thus, perceptual learning is not only a way of 
training attention to pick up distinctive stimulus fea- 
tures 1131 or of improving sensory processing resulting 
from increased alertness 1141. Karni and Sagi 1101 stud- 
ied learning of orientation-based texture segmentation. 
This task is believed to be carried out by a pre-attentive 
(parallel across the visual field, bottom-up) stage of vi- 
sual processing that detects texture boundaries by com- 
paring activities of neighboring local processing units 
(filters) selective for basic image features, such as ori- 
entation and size 1151. Single-cell recordings show that 
texture boundaries are already detectable in cortical 
area Vl 1161. In the learning experiment, observers had 
to identify the orientation of a small texture region em- 
bedded in a background of a different orientation 1101. 
An additional fixation task was used concurrently with 
the texture task to minimize the use of attention 1171 in 
the segmentation process. Learning was found to be 
spatially local (i.e. no transfer of learning between two 
retinal locations separated by three degrees), specific 
to background orientation and ‘monocular’, thus sup- 
porting the idea that learning takes place at a low-level 
anatomical site. Monocular learning is difficult to rec- 
oncile with the ‘attention’ hypothesis 1131, as attentive 

Abbreviation 
REM-rapid eye movement. 
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Learning rules 

Learning may involve improvement of stimulus- 
response connections and/or detection of associations 
(correlated activities) within the sensory system. Some 
insight into the mechanism of learning comes from lat- 
eral masking experiments. Polat and Sagi 1241 found 
that contrast threshold for an oriented Gabor signal 
can be enhanced by positioning two high-contrast 
flanking signals (masks) at a distance of about three 
times the target wavelength. This enhancement was 
found only when the masks were placed in the di- 
rection defined by the target orientation or orthogonal 
to it (cardinal directions) 1251. Learning experiments 
showed that practice can increase the range of these 
interactions by a factor of six, but only along the car- 
dinal directions 126”l. An increase in the range could 
not be obtained by practicing on the large distances 
alone, rather, it required practicing with a mixture of 
distances, including the small ones. The finding that 
different distances have to be processed within the 
same session implies that there exists a window of in- 
tegration time for the activities of the different neurons 
to be detected and associated. U-i-learning’ was also 
observed when practice was limited to a small range 
of distances. Polat and Sagi 126”l suggested that long- 
range interactions are generated via cascades of local 
interactions, with local connections being strengthened 
or weakened by practice. Learning was suggested to be 
limited to connections that already exist in the system 
(cardinal directions) and to follow associative (Hebb- 
like) rules. According to this theory, activation of two 
neighboring units within a short time interval (of a few 
minutes) increases the efficacy of their connections (if 
they exist), whereas repetitive activation of one of them 
reduces connection efficacy. 

Electrophysiological correlates 

Though the functional organization of primary sensory 
areas was considered to be fixed in the adult primate, 
extensive work done in the past decade has revealed 
that a great deal of plasticity exists in those areas (for 
reviews see 127-301). Long-term changes in neural re- 
sponses can be induced by behavioral training in dif- 
ferent sensory modalities. Recanzone, Merzenich and 
colleagues 131,321 demonstrated major changes in the 
details of the cortical spatio-temporal representation in 
monkeys (adult owl) trained to detect tactile stimuli 
delivered to a small fixed spot on one finger. Progres- 
sive improvement in auditory frequency discrimination 
with practice appeared to be accounted for by a par- 
allel, progressive change in the region representing 
the corresponding frequencies in the primary audi- 
tory cortex 133”l. Weinberger and associates 134,35*1 
demonstrated frequency-specific receptive field plas- 
ticity in auditory cortical areas by studying classical 
conditioning in adult guinea pigs. A recent report sug- 
gests Hebb-like rules apply to this type of learning (SJ 

Cruikshank, NM Weinberger, Sot Neurosci Abstr 1993, 
19:164). 

Several recent studies show plasticity without behav- 
ior. Fregnac, Shulz and colleagues 136,371 describe a 
cellular analog of primary visual cortex plasticity. They 
induced long-term changes in receptive field selectivity 
(for orientation and eye), in anesthetized and paralyzed 
cats, by pairing specific stimuli with selective activation 
(iontophoretically) of the recorded neuron. Although 
these stimuli were not behaviorally significant; driving 
the cells iontophoretically probably provided a simu- 
lated gating signal. In the primary visual cortex, a 
striking increase in receptive field size was observed 
after removing visual input by using restricted reti- 
nal lesions (long term) 138,391 or after producing an 
‘artificial scotoma’ by masking out an area covering 
the receptive field of a recorded neuron (short term) 
1401. These visual effects were found in anesthetized 
and paralyzed cats. Single-units recordings from ar- 
eas MT (medial temporal) and MST (medial superior 
temporal) of behaving macaque monkeys showed fast 
(300-500 trials) sensitivity improvement, and the rate of 
improvement correlates with the psychophysical per- 
formance (E Zohary, S Celebrini, KH B&ten, WT New- 
some, Sot Neurosci Abstr 1993, 19:1282). This improve- 
ment in neuronal sensitivity could also be obtained by 
repetitive stimulus presentation. In a recent study, elec- 
trical brain activity (VEP: visual evoked potentials) was 
recorded from the occipital areas while the observers 
were exposed to vernier stimuli, i.e. no task (M Fahle, 
Perception 1993, 2230). Some specific field potential 
configurations appeared after a few hundreds of trials, 
presumably correlated with learning observed using 
the same stimuli 121’1. 

Conclusions 

Psychophysical and electrophysiological studies pro- 
vide evidence for plasticity of primary sensory areas. 
Perceptual learning seems to provide an excellent be- 
havioral paradigm for exploring human learning, es- 
pecially when coupled with current understanding of 
human vision. Perceptual learning was shown to have 
two major components: fast (few hundreds of trials) 
and slow (days). The fast component seems to affect 
higher levels of processing (above the site of binocu- 
lar integration), and probably involves top-down pro- 
cesses, improving the link between task-dependent 
units and sensory units while selecting optimal sen- 
sory units for the task. Once these links become ef- 
ficient, the task becomes ‘automatic’ (i.e. non-attentive 
1171) and performance is then limited by sensory archi- 
tecture only. The slow component seems to follow the 
fast one and involves low-level processes (monocular) 
within primary sensory areas. At this stage, links be- 
tween sensory units are strengthened or weakened ac- 
cording to their activity correlations, thus establishing 
new associations and dissociations. First-order associ- 
ations (via one link) are limited to direct connections, 
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but higher-order associations are possible by estab- 
lishing chains of associations. Thus, although we are 
limited by the system architecture in what we can per- 
ceive as direct associations, it is possible to perceive 
more complex percepts (or concepts) by indirect as- 
sociations. Fast learning probably takes place on-line, 
when the stimulus is still effective or immediately after, 
but slow learning and the consolidation of associations 
seem to be performed off-line, for hours after stimulus 
presentation while the individual is not aware of the 
problem being solved. Though consolidation of asso- 
ciations may take place during daytime, it seems that it 
also depends on processes that are active during REM 
(dream) sleep. 
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