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Abstract

A basic problem in psychophysics is recovering the mean internal response and noise amplitude from sensory discrimination data.
Since these components cannot be estimated independently, several indirect methods were suggested to resolve this issue. Here we
analyze the two-alternative force-choice method (2AFC), using a signal detection theory approach, and show analytically that the 2AFC
data are not always suitable for a reliable estimation of the mean internal responses and noise amplitudes. Specifically, we show that there
is a subspace of internal parameters that are highly sensitive to sampling errors (singularities), which results in a large range of estimated
parameters with a finite number of experimental trials. Four types of singular models were identified, including the models where the
noise amplitude is independent of the stimulus intensity, a situation often encountered in visual contrast discrimination. Finally, we
consider two ways to avoid singularities: (1) inserting external noise to the stimuli, and (2) using one-interval forced-choice scaling

methods (such as the Thurstonian scaling method for successive intervals).
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1. Introduction

Human performance in psychophysical tasks, where
stimuli with different intensities have to be discriminated,
depends on the magnitude of internal responses within
the brain, and on their trial-by-trial variability (Green &
Swets, 1966; Thurstone, 1927). Knowledge of these
response parameters is important for understanding
the characteristics of the internal modules that process
the presented stimuli. Unfortunately, these parameters
cannot be measured independently with psychophysical
tools. Recent attempts to resolve this issue in the case of
contrast discrimination led to conflicting results with
internal noise magnitude either increasing with contrast
(Kontsevich, Chen, & Tyler, 2002; Lu & Dosher, 1999)
or being constant (Gorea & Sagi, 2001), or approximately
constant (Foley & Legge, 1981). In this work, we analyze
a model derived from signal detection theory (SDT)
for the two-alternative force-choice experimental method
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(2AFC) and show its theoretical limits in separating
signal from internal noise (trial-by-trial variability of the
signal). In an accompanying paper (Katkov, Tsodyks, &
Sagi, 2006a) we apply the results of this theoretical analysis
to measurements made with the contrast discrimination
task.

In the 2AFC procedure an observer reports which
one of two stimuli presented in a trial contains a target,
with the target presented in only one of the two
stimuli (e.g., the target is the stimulus with the higher
intensity). SDT assumes that each stimulus evokes a scalar
internal response that varies across trials so that the
observer’s performance depends on the distributions
of these internal responses. In practice two simplifying
assumptions are usually added: (1) the distribution
of internal responses is normal, and (2) the decision is
made by comparing internal responses corresponding
to the two stimuli. Under these assumptions the
2AFC-SDT model is equivalent to the Thurstonian
law of comparative judgment (Thurstone, 1927). The
percentage of correct discrimination responses in these
models is given by Green and Swets (1966), Iverson (1987)
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and Thurstone (1927)

R, — R,
Py =& —=2— )

O-51 + 652

where @(x) is a normal cumulative distribution function,
R, R,, are mean internal responses, d;,, 0, are trial-by-
trial standard deviations of the internal responses, and
Py, 5, is the probability of correct discrimination between
stimuli s; and s,. The values of Py, ,, are estimated from the
experiment, whereas those of R and ¢ are the parameters of
the model. Eq. (1) has four unknown variables for one pair
of stimulus intensities, leading to an ambiguous solution
for the values of R and .

It seems to be possible to estimate the values of R and ¢
for all stimuli by increasing the number of stimuli with
different intensities and the number of pairs for compar-
ison, since the number of independent parameters grows
linearly with the number of stimuli, whereas the number of
pairs is a quadratic function of the number of stimuli. The
problem was first formulated by Thurstone in his theory of
comparative judgment (Thurstone, 1927), in which he
described a practical procedure to obtain the unknown
parameters in the case of a weak dependency of the ¢’s
on the stimulus, where the problem can be linearized
(Thurstone, 1927; Torgerson, 1958). Nevertheless, to solve
the problem two conditions should be satisfied: (1) the set
of equations (1) has a unique solution or a reasonable
normalization is provided to remove ambiguity; (2) when
an exact solution is unique a reliable estimation of the
parameters from a limited number of trials can be
obtained.

The first condition was analyzed in the work of Iverson
(1987). He found that there are two types of symmetries in
the models described by Eq. (1). (1) for any ¢ >0, and f the
following family of models:

R; = dRi—i_ﬂa

o = 00; ()

describes exactly the same P;; (continuous symmetry). (2)
If there is a linear relationship between R and o, then
another model (with appropriately chosen constants a, b, ¢,
d and k)

(,ZR,' b k
R;:ﬁ and o= (3)
describes exactly the same P;; (point symmetry). Thus,
even for infinitely long experiments the reconstruction of
model parameters is only possible up to a common scaling
factor for all parameters and for some constant added to
all R’s, because these transformations do not change the
performances predicted by Eq. (1). In addition, when R
and ¢ are linearly related, another solution will describe
PiJ(R, 0).

It is possible to generalize the Thurstonian method by
using any of the standard estimators. In practice, even for

exactly specified and known internal parameters (R, o), the
measured performances deviate from the ones calculated
by Eq. (1) owing to finite sampling. Thus, the model’s
parameters, estimated from the measured performances,
deviate from the ‘‘true” parameters characterizing the
internal response. The degree of this deviation depends on
the method used for estimating the parameters and on the
number of trials for each measurement.

The second condition for the reliable parameter estima-
tion depends on the properties of the estimator and the
model itself. To illustrate the effects of these two factors we
can examine the problem in the “P” space (Fig. 1), where
coordinates are defined by the values of Py, ,,, and each
pair (s1,s;) represents an axis in multidimensional space.
The dimensionality of the space is defined by the number of
pairs selected for comparisons in the experiment. Eq. (1)
defines the surface in this space, parameterized by the
variables R’s and ¢’s. This surface contains P-values that
result from the SDT model described above for all possible
parameter values R’s and ¢’s. The experimentally measured
values of P define a point in this space that does not lie on
the surface, because of the finite sampling. The number of
trials defines the size of the region in P space where possible
measurements can be found (more precisely, for each point
in the region, it defines its probability of being obtained in
the experiment, given a true model). The estimator projects
the measured point into the surface and finds the
parameters corresponding to the projected point. Thus,

Fig. 1. An illustration of parameterization singularity. After the projec-
tion of measured performances onto the surface is performed by the
estimator, the projected points can fall near the singular point of the
parameterization where different values of the parameters correspond to
very close points on the surface. Consequently, any estimator will not be
able to distinguish between these parameters.
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the shape and the size of the projected region (and possible
parameters of the model) is defined by the estimator. If the
parameterization of the surface by the R’s and ¢’s has a
singularity, then near the singular point, large changes in
the parameters consequently lead to very small changes in
the performances, which is reflected as a small shift on the
surface. In this case a small experimental error will lead to
large differences in the estimated parameters, indepen-
dently of the estimator used. This, in turn, leads to large
confidence intervals in the estimated parameters. We
emphasize that ambiguity in parameter estimation resulting
from singularity is different from the symmetry considera-
tions described above.

The present work deals with the singularities in the
parameterization of the model performances on the
surface. The properties of particular estimators are not
discussed here since singularities lead to difficulties in the
estimation of the model parameters, regardless of the
estimator used. The symmetries of the exact solution of
Eq. (1) are described in Iverson (1987) and are not
discussed here. The main issue here is the ability to
estimate parameters of the model described by Eq. (1) from
the experimental data, where limited number of trials lead
to Py, that cannot be described exactly by Eq. (1).

2. Analysis of the model

Let us assume that a set of stimulus intensities S =
{ssi=1...n} and a set of pairs P = {(s;,5));s;,5 € S}
define the measurement scheme. Furthermore, a set of
model parameters X = {R;,0;;i=1...n} € R*" defines a
point in the parameter space and a set of performances
P= {P(s,-,sj); (si,57) € B} defines the point in a measurement
(performance) space. Thus, a set of equations

5 — Ry

/52 2
O-Sl' + O-Sj

defines the surface of possible performances and the
mapping of points in the parameter space to the surface
in the measurement space: € : X+ P. The mapping is not
reversible, namely, two points X and X’ satisfying the set of
Egs. (2) or (3) are mapped to the same point P.

Let us assume that the performance of the subject results
from a ““true” model with parameters X,, corresponding to
the idealized performances P(X;). The model X, estimated
from the experimental data, will necessary correspond to
different performances ﬁ(ic’). We therefore define a family
of models with performances that are separated from the
true one by an Euclidean distance e&:

8, = {551 Z [Pij(X) — Pi,j(fft)]2<82}-
(i)eB

C=JPy,=0 i s} € P (4)

The distance element ds* at the point P on the surface €
can be expressed in terms of parameters using a metric

tensor:
2n
ds* = Y (dPiy)’ = g, dx,dx,, Q)
(ij)eB =1
0P, 0P,
I = 6)21J) ﬁ ©)
(ijep K v

Using Eq. (4) the metric tensor can be expressed as follows:

2
o = dP(Zij)\ 0Zuj) 9Zay) 7
g = dZ(iJ) axﬂ va ’
(D
where
R — R,
Zijy=—F ®)

2., 2
\/%i T

The singularities in the metric tensor g, mean that ds* =0
along the zero eigenvectors and thus &, will be much large
than in non-singular case. Consequently, a family of
models barely distinguishable from each other should be
expected when the true model approaches a singular one,
and there is no reasonable estimator that can dissociate
these models.

The conditions for the metric tensor singularities
are represented by the following equation (derived in
Appendix A):

R, — R:
(5Rj — 5R,) — Oé n 0_]21 (0’,‘56,’ + O'jé()'j) = 0, (9)
where 0R and do stand for small deviations of the
parameters from R and o correspondingly.

The metric tensor has two zero eigenvalues in the general
case. The eigenvectors corresponding to these eigenvalues
represent transformations that do not change the measured
performances (the true continuous symmetry of the model,
Eq. (2)): eigenvectors dx; = {0R; = 1,00, = 0} and ox; =
{0R; = R;, 00, = g;} reflect the shift of mean internal
responses and scaling of all parameters, correspondingly.
Surprisingly, there is a subspace of internal parameters
(R, 0), where other singularities appear.

Appendix B shows the derivation of all singularities of
the metric tensor. There are three families of singularities
except those defined by the model symmetry (presented in
Table 1). Each family is parameterized by one, two, or
three parameters. For each particular singular model X
there is a family of models §,(xp) differing slightly in
performance but spanning a large range of parameters.
Here, we can define a family of singular models as the
family of models where at least one model is singular. It is
straightforward to see that a family of singular models
spans a larger space of parameters compared to families of
non-singular models, for the same value of distance e.

In order to illustrate the practical implication of the
singularity, we analyze the properties of a family of models
with performances close to the constant noise model
(0; = 0, Vi). Normally, the mean internal response is a
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Table 1
Conditions for singularities of the metric tensor (Eq. (7))

o OR oo
any aR+b ac
d aR* + bR+ dQ2aR + b)
3
JaR+b R1+ LR+ —a(aR+b)2 +dvaR+b
a.
Va(R+ ¢ +b VaR+ ¢y +b+dR+f AR+ O +dy/aR+c) +b

VaR+ ¢ +b

The first column represents the dependency of ¢ on R in each of the 4 conditions, and the two other columns represent the eigenvector components for
singular eigenvalues. Here a, b, ¢, d, f are constants parameterizing the corresponding family of models.

monotonically increasing function of the stimulus intensity.
Thus, in order to eliminate the symmetry of Eq. (1), we can
set the minimal and maximal mean internal responses to
zero and one, respectively. In this way we define a unique
relationship between model parameters X and probabilities
P, except for the case of linear dependency of R and .
Nevertheless, the transformation of the parameters along
the additional singular eigenvector defines a one-para-
metric family of the models with P'(y) approaching P (see
details in Appendix C):

g — (L+7RIR;
I+
1 +2yR;
g/,:M, (10)
147y

Here o represents the noise in the constant noise model and
y is an arbitrary parameter (formally y € [— %, +00)). When
y deviates from zero, the distance between P and P’
increases, and y = 0 defines the constant noise model. The
significance of singularity of the constant noise model is
that the distance between P and P’ grows slower than
quadratically with y, and thus the size of §, shrinks much
slower comparing to a non-singular case. Egs. (10)
parametrically define a relationship between R and ¢,
which is illustrated in Fig. 2. This family of solutions can be
explicitly expressed as

4y(1 R +1
O_;Z\/ y(1 + )R + . (11)
I+y

Clearly, the resulting dependency defines a singular model
(Table 1, third line). This leads to a dense cloud of
singularities near the constant noise model.

3. Monte-Carlo simulations

To illustrate our theoretical findings, we performed
Monte-Carlo simulations of the 2AFC experiment. Based
on the simulated performances, we estimated the para-
meters of the model. In order to check the stability of the
solution, the simulation-estimation procedure was repeated
several times starting from the same initial conditions. For

2 2
1.8 1.8¢
1.6 161
1.4 141
1.2 127
o 1 ©
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0o 0.5 1
(A) R (B)

Fig. 2. Examples of the relationship between noise amplitudes and mean
internal responses under conditions where the performances are close to
the constant noise model. Different curves represent different values of the
parameter y. Curves with y<0 (A) and y>0 (B) are shown.

a singular case we expect much greater variability as
compared with the non-singular case.

During the simulations, the mean internal response and
the noise amplitude were fixed for each stimulus intensity
(true model). Two random numbers (internal responses)
were drawn from the normal distribution, with the mean
and standard deviation being the mean internal response
and the noise amplitude for the corresponding stimulus,
during the simulation of each trial. The trial was
considered as correct when the internal response for the
stimulus with the higher intensity was greater than the
internal response for other stimulus in the pair. Then,
based on the trial responses, we computed the perfor-
mances for each pair of stimuli as the percentage of correct
discriminations. The least-squares estimator was used to
reconstruct the parameters of the model. Finally, the
parameters in all cases were normalized so that the lowest
and highest mean internal responses were zero and one,
respectively.

Fig. 3 depicts the estimated internal parameters obtained
from the simulated performances. A large spread of model
parameters was observed when the performances were
simulated using the constant noise model for fifty different
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Non-singular case Constant noise
<

Internal response,
arbitrary units
/s

Noise amplitudes,
arbitrary units

0¢ okt
2 4 6 2 4 6

Stimulus intensity, arbitraty units

Fig. 3. Reconstruction of the mean internal response and noise amplitude
in the Monte-Carlo simulations. The mean internal response and noise
amplitudes reconstructed using the performances obtained in the Monte-
Carlo simulations (see details in the text) are presented in the first and the
second rows respectively. An estimation for fifty simulations is represented
by the dotted lines, and the “true” model is represented by solid lines.
Non-singular and constant noise cases are shown in the first and second
columns, respectively.

simulated experiments with the same underlying model
(a singular model, see Table 1, second row), and almost
no spread with a non-singular model. The parameters in
both cases were estimated based on the modeling of 40 000
trials for each pair of stimuli (which defines &). All possible
pairs were used in the simulation. The range of obtained
values of P were comparable in both models (data not
shown).

4. Discussion

Analytical calculations show the existence of three
possible singularities in the estimation of internal model
parameters from 2AFC data, in addition to those resulting
from symmetry (Egs. (2) and (3)). These singularities lead
to difficulties in estimating the model parameters from
the experimental data, since large differences in the
parameters near a singularity produce small differences in
the performance. One of the signs for the presence of
singularity is the large confidence intervals in the estimated
parameters. The reason for the singularity originates from
the model, where the difference of two normal random
variables is used. Thus, all methods employing such an
approach (e.g. difference judgment) can potentially experi-
ence a singularity problem.

The present results show that data from 2AFC experi-
ments should be treated with caution. In general, the set of
the models &, describing the data decreases with the length

of the experiment. Nevertheless, the size of such set
decreases much slower when §, includes a singular model.
Consequently, for reasonably long experiments it is not
possible to estimate the parameters reliably. Moreover, if
there is a singularity of the metric tensor (7), then any kind
of estimator and any non-singular distance definition
introduced into the P space will lead to the same problem
in estimating the parameters. On the other hand, for
models where the metric tensor does not have singularities,
except the model symmetry, any reasonable estimator can
be used to recover the model parameters.

In order to avoid singularities, the model should be
modified. One way to do this, is to introduce some
assumptions about internal responses and/or their varia-
bility, which remove singularity. Then, fit a new model
using the same data. This is a good strategy, when someone
looks for a model that describes the data, not necessarily a
unique one. On the other hand, this is not always sufficient.
For example, there is a strong debate whether the variance
of internal responses depends on contrast or not (see
Introduction). Any a priori assumption about the noise
behavior eliminates the question, and allows to find a
unique model. However, this assumption may not corre-
spond to a ““true’” model. On the other hand, it seems to be
possible to avoid singularities by using a different experi-
mental scheme. For example, external noise can be used to
move the system away from the singularity. In practice,
external noise can be introduced into the experiment as a
trial-by-trial variation of the stimulus intensity. Thus, the
distribution of the internal responses will include variations
due to the internal noise and the transduced external noise.
One problem here is that, due to transducer nonlinearity,
the contribution of the external noise to the internal
distribution is not necessarily normally distributed. This
problem can be minimized by using external noise with
amplitudes small enough to allow a linear approximation
around the mean. It is not clear, however, what magnitude
of external noise is required to move the system away from
singularity.

Another method that avoids singularities is the
Thurstonian method of scaling on successive intervals
(McNicol, 2005; Katkov, Tsodyks, & Sagi, 2006b). In this
method, observers rate stimuli of different intensities using
a subjective scale (e.g., 1 to 5 with 1 being the weakest
stimulus and 5 the strongest). The model here assumes that
each stimulus evokes an internal response and that the
brain establishes a number of criteria (category bound-
aries). A particular scale value (category) is assumed to be
reported when the internal response evoked by the stimulus
is between the boundaries defined for that category. Thus,
the probability of the reported class being greater than j
can be represented in the following form:

RS:‘ — k.i

s
/52 2
a.s‘l' + O-kj

P=a (12)
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where s; is a presented stimulus, k; is a mean upper
boundary for the j class, Ry, is a mean internal response for
the presented stimulus, o, is a standard deviation of the
internal response and O is a standard deviation of the
boundary j. Formally, Eq. (12) has the same structure as
Eq. (1), but in practice we do not expect the same
singularities to emerge, since ¢, and o, have different
origins. In fact, if o4 is assumed to be independent of k,
there will be no singularities in the solution of Eq. (1).
Instead, an additional symmetry will appear. Such an
assumption implies that all decision boundaries have equal
variances.
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Appendix A. Condition for singularities

We start from the metric tensor

2
d<1>(Z(,-,,->)> 0Zij) 0Zij) (A.1)

. |
uv e dZ(iJ) axﬂ ax‘,
We can express it in terms of the parameters of the model,

R’s and ¢’s, for which we must first compute the derivatives
of the Z;; values:

0Z;) _ Ok — Oik

ORy / ’
ke o} + 0]2

GZW) Uiéik+(7j5jk
W) — _(R; — R R (A.2)
0o L@
where 0, is a Kronecker delta symbol:
5 1, i=k,
=Yoo, ik
Thus, the metric tensor has the following form:
_ e (4DZaip)\ O = 8ix)Gim — Sim)
IRiR _Z dZ i 2% + g2 ’
(i) (&) i Ji
do(Z; J)>2 R, — R
9orRn = — (
7k % dz;; (6% + 0'12)2
x(0i0ix + ;0,1 )(Sjm — dim),
g = Z (d ‘I’(Zi,/)> *(Rj— R
TjOm (ZJ) dZi,f (0_12 + 0_12)3
X(Giéi,k + 0]'5]"/()(0','51',;" + ajéj,m)- (A3)

Since we are looking for the singularities of the metric
tensor, it is sufficient to find the solutions for the following
system of equations:

Z 90Xy = 0.
u

Substituting Egs. (A.3) into Egs. (A.4) leads to

AdD(Zi )\ Ok — 3:1)(Bim — Oim)
0 — o ] 5 Js 5 5R
%:%;<dZJ> %+ '

Yy (d‘p(zi,f)>2 R — R
C G\ i) @i+ o)
x(0:0ik + 604 )(Sjm —

(A4)

51’,)71)56/(:

dd(Z; A)> 2 R—R
0= — < J J
; % dZij ) (6} +0})
X(6i0im + ;0;m)(0jx — Oik)ORy
do(Z; ,)) *(Ri — R’
oy (48
zk: % dZij ) (o} +0})

X(O’i(si,k + O'jéj,k)(dié,',m + O’_iéj’m)éak.

(A.5)
Taking the sum over k, we obtain
2
0=y (d(fz(ZZ,;])) (5_/;:21 J—r i},m) (OR; — OR)
-y (dqs(zi J))z R — R
@\ 42y ) @+
X((Sj,m - 5!’,171)(0_[50'[ + O—jéo—j)’

do(Z; -)>2 R —R;
0= 3 () B Gt i)
%; le,] (0-12"'_0]2)2 A

d®(Z;))\* (R; — R;)’
x(3R; — 5R;) — < ”) 7
' %; dZij ) (@} + )’
X(O-iéi,m + Ujéj,m)(O',ﬁGi + O'jéO'j).

(A.6)

Combining the terms, we obtain:

B dD(Zi))\* (Bim — i)
0_%;( dZi,j ) alz+0'12

X

2
i J

R — R
(OR; — 0R)) — o'/ e (oi00; + 0/'50/')] ,

dd(Z; '))2 R —R;
0= ( . . (O'iéi,m + 0"(5‘,111)
% dz;; (67 + a_/?)2 7

x |(3R; — OR;) — (A.7)

R — R,
00+ c;00))].
g%_i_o]z (0id0; + 0 0'])1
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Thus, the metric tensor has a singularity when the
expression in the square brackets equals zero. If at least
one of the brackets is not zero, but the global sum is zero
due to accidental cancellation of terms, then removing the
pair which has a non-zero expression in the bracket,
eliminates the singularity. Thus, the condition for the
singularity, that does not depend on the particular choice
of the pairs used in the experiment is

R, — R,
45— (0:00; + 7;00)) = 0
i o

(6R; — 3R;) — (A8)

for all stimulus pairs (i,7). Eq. (A.8) is an equation for the
eigenvector (0R;, do;) for given model parameters (R;, g;).
We are looking for the condition for (R;,0;) that
guarantees that Eq. (A.8) has a non-trivial solution.

Appendix B. Derivation of singularities

Eq. (A.8) is defined for a set of stimuli, but, since we are
looking for the singularity conditions that do not depend
on the particular choice of the stimulus intensities, we
extend this equation to the continuous limit:

p) — p(x) — W(G(X)i(ﬂ +0()EM)) = 0.

(B.1)

Since R; = R(c¢;) and R(c) is a monotonic function of
contrast ¢, we can substitute variables, so that R(c) = x.
This redefines the function o(R(c)) = o(x), which is now
a function of x. Thus, p(¢;) =3dR; and &(c;) = da;; ¢
represents an intensity of the stimulus i; o(x)>0,Vx,
p(x) € R. Solving this functional equation on p and & for
arbitrary o(x), we will obtain all possible singularities
together with the conditions regarding the forms of ¢ where
these singularities appear.

The left part of Eq. (B.1) equals zero when x = y. Thus,
we are looking for cases when y # x. We divide Eq. (B.1) by
(¥ — x), and obtain

pW) = p(x) _ a(x)E(x) +a()EW) _
y—x o(x)’ + o(y)’
Then we take a limit of y — x, and obtain
oy ()
p(x) = @-
Thus,
¢(x) = a(x)p'(x). (B.2)
Substituting Eq. (B.2) into Eq. (B.1) leads to
_ oy 2 =0
p(») — p(x) o ) " (y)z( a(x)*p'(x) + o(»)’p' ()

Multiplying it by a(x)> + o(y)* gives

() = PEN(0(x)” + 0 (1))
— (= ()P (¥) + ()’ p' () = 0.

Introducing a new variable s(x) = a(x)* >0, we have
(p(y) = p())(s(x) + 5(»))
— (= ()P (x) + 5()p'(») = 0.
Then, we take a derivative with respect to x, and obtain
— /(X)) + 5(7) + (p(y) — p(x))s'(x) + (s(x)p'(x)
+50)p' () — ( — D) (x)p'(x) + s(x)p"(x)) = 0,
collecting terms, we obtain
(') = P (Ns) + (p() — p(x)
— P/ () — x)s'(x) = (v — x)s(x)p" (x) = 0.

We take a derivative with respect to x a second time, and
obtain

= 0" ()s(y) = 20" () (y = X)5'(¥) + (p(y) — p(x) — p'(x)
x(y = X))s"(x) + 5(x)p" (x) = (v = X)s(x)p" (x) = 0.

Collecting the terms together and changing a global sign,
we obtain

p"(O)[s(y) = 5(x) + 2(y = X)5' ()] = (p() — p(x) = p'(x)

x(y = x))s"(x) + (r — x)s(x)p" (x) = 0. (B.3)
Dividing Eq. (B.3) by (y — x) yields
S0 09" 4 25)
_x )[p(y) p(x) (x)] _0
Taking the limit y — x, we obtain
3 ’
3p"(x)s'(x) + s(x)p" (x) = [sCo"p" (1 =0. (B.4)

s(x)°

Taking a y derivative of Eq. (B.3) yields

P )’ () + 25 ()] — (p'(y) — p'(x))s" ()
+s5(x)p"(x)=0

Substituting Eq. (B.4), we obtain

P (X)) — 5" ()] = (' () — p'(x))s"(x) = 0

and taking the second derivative, we obtain

p"()s"(x) = p"(x)s"(y) = 0.
Finally,
p'(y) _ p"(x)

= const.

S0 )
When s”(x) exists and s”(x)#0, we have

p(x) = as(x) + fx + .

On the other hand, Eq. (B.4) puts the constraint on s(x):

” const

=",
p"(x) RS
p"(x)  const

= const.

(%) s(x)*s"(x)
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Thus, s(x)’s”(x) = const. Starting from equation
s(x)*s"(x) = c1.
We multiply it by 2(<)1 yielding
§'(x)
L

Taking an integral and redefining ¢; we obtain

(B.5)

25 (05" (x) = [ (x))] = 2

ot — €
CE) = e
Multiplying it by s(x)>, we obtain
297\ 2
cseor = (ML) =+ ey

and introducing a new variable {(x) = s(x)*, we obtain

(@) =crl(x) + e

or

{'(x) = Vel + e (B.6)

Since {(x) is a positive real function, this equation applies a
constraint to the parameters ¢; and ¢;:

25 minl().
C1 R
The solution of Eq. (B.6) is
() =S+ e =2,
ci
Thus,
() =50 = o) = J(x+ea =2
1

and

o(x) = {‘/c—l(x +e3) — @
4 C1

The expression under the root should be positive. If no
constraint on x is applied then ¢; >0 and ¢; <0.

If s”(x) = 0, then either s(x) = const, or s(x) = ax + b. If
s(x) = const, then Eq. (B.1) can be written as

(0 = E) +E0) _

p(y) — p(x) — o= 0.
Substituting Eq. (B.2) yields
p() — p(x) — (v — ZLTED

2

Taking a derivative with respect to y, we obtain
Py —p'(x) = —x)p"(1)=0.

Taking a derivative with respect to x, we obtain
0" (x) = p"(y) = const.

Thus,

p(x) = ax®> + bx+c¢, E&(x) = o(Rax + b).

And in the last case, when s(x) = ax + b, Eq. (B.1), after
substituting Eq. (B.2), becomes

y—-Xx /
p(y) — p(x) — m((ax +b)p'(x)

+(ay+b)p'(y) = 0.

Multiplying it by a(x + y) + 2b gives
(p(y) — p()Nalx + y) + 2b)

— (= x)((ax + b)p'(x) + (ay + b)p'(»)) = 0.
Taking the derivative with respect to y gives
p')ax + b) + alp(y) — p(x)) — (ax + b)p'(x)

— (v = x)(ap'(y) + (ay + b)p" () = 0.
Taking a derivative with respect to x gives
ap'(y) — ap'(x) — ap(x) — (ax + b)p(x)

+ap'(y) +(ay +b)p"(y) =0
and combining the terms together, yields
2ap'(y) + (ay + b)p"(y) = 2ap'(x) + (ax + b)p"(x)

= const.
Thus,
2a(ax + b)p' (x) + (ax + b)*p"(x) = c(ax + b),

where ¢ is some constant that we will redefine in the
following calculations as needed. Combining the terms in
the left part we obtain

[(ax + b)*p'(x)] = c(ax + b).
Thus,

(ax + b)*p'(x) = clax + b)> + d,

where d is another constant, and

'X)=c+——.
P (ax + by
Finally,
p(X)=cx+f+

ax+b’

Here a and b are parameters of the singularity, and ¢, d and
f are some constants.

Finally, there are four different types of singularities
expressed in terms of R, which are presented in Table 1.

Appendix C. A family of models for the constant noise
singularity

We are interested in a family of solutions §,,¢ — 0 that
is generated by the constant noise model (R, ¢). In order to
find it we perform transformations to the constant noise
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solutions along three singular eigenvectors. The following
transformations are used:

“Shift” “Seale” “Nonlinear”
R,-—)R,-+oc Ri—>ﬁRi R,'—)Rj (1+VR,)
g — 0 g — fo; g — 0; (1 +29R))

Here, o, 8, and y are certain parameters. By the nature of
the transformation, >0, y is a small parameter, and o is a
real number. We can normalize the transducer function by
putting three constraints: (1) R, =0, when R; =0; (2)
R:=1, when R,=1; (3) R, like R, is a monotonically
increasing function. In this way the mapping will be
unique. Three transformations can now be applied in any
order and despite the presence of the nonlinear transfor-
mation they are either equivalent or do not satisfy the
normalization constraints. Next, we present an analysis of
a particular transformation. The analysis of the remaining
five transformation sequences is identical and does not add
any information, and thus, is not presented here.

Here, we analyze the family of solutions obtained by
applying a sequence of transformations to the constant
noise model. The sequence is as follows: “shift”, “non-
linear” and “scale”. Thus, we can write the following
sequence of R’s and ¢’s:

v>0
1
i /
0
12y ) 1+2y
T4y -1 -1+ 0 1/(+y) A T4y
o’lo
vY<0
1
o« \
0
R R 12y 0 1+2y
1/(1+y) 1 Ty Ty 1 1/(1+y)

c’lo

Fig. 4. The relationship between R and ¢ defined by Eq. (C.9). The solid
line represents the resulting dependency of ¢ on R. All solutions from the
family cross the original constant noise model. When 7 becomes too
negative, the curve does not reach line R = 1, and there is no mapping
between the constant noise model and the transformed one. Therefore,
these values of y are invalid.

3 “Scale”

Operation R a
1 “Shift” Rgl) = R,’ + o 651) =0
2 “Nonlinear” R = (R + o)(1 + 7(R; + o)) o = (1 + 2)(Ri + )

RY = BR; + o)1 + (R, + 2))

o = (1 + 2(R; + %))

After the transformation we apply the constraints:

0=ap(l + ay), (C.1)

1= B+ a)(1 + (1 + o). (C.2)

Since >0, then there are two possible solutions for the
coefficients: either o = 0 or not. If «#0, then

l4+ay=0 from (C.1) (C.3)

(14+a)py=1 from (C.2) and (C.3) (C.4)

By —p=1, (C.5)

p= i T (C.6)
Y

So, for >0, we must have y> 1, which is a large number,
but even for that large number, a transformed R; will
not be a monotonic function. Thus it is an impossible
transformation.

If « = 0, then

1

F=ivy

Substituting the values of the parameters into transformed
vectors, we obtain:

, R (1+yRy)
R=" 7 C.7
and
14+ 2yR;
o = M_ (C.8)

From Eq. (C.8) we can find an expression for R; and
then substitute it in Eq. (C.7). In this way, we will
obtain a functional dependency of R on ¢ for a family
of the solutions experimentally equivalent to the
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model, with all 6; = 0.

RZ:L(w_I),
2y o

, 1

R=5a+» )

2/
o
L (1477 -1
(o

Two possible dependencies for >0 and y<0 are shown in
Fig. 4. The part of the solutions that we are interested in
lies between R=0 and R=1, and >0 is relevant.
Formally, y € [-4,+00), but in practice is defined by an
experimental error. For values y < — 1, ¢’ becomes negative
for R approaching zero or one.
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