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A B S T R A C T

Following exposure to an oriented stimulus, the perceived orientation is slightly shifted, a phenomenon termed
the tilt aftereffect (TAE). This estimation bias, as well as other context-dependent biases, is speculated to reflect
statistical mechanisms of inference that optimize visual processing. Importantly, although measured biases are
extremely robust in the population, the magnitude of individual bias can be extremely variable. For example,
measuring different individuals may result in TAE magnitudes that differ by a factor of 5. Such findings appear to
challenge the accounts of bias in terms of learned statistics: is inference so different across individuals? Here, we
found that a strong correlation exists between reaction time and TAE, with slower individuals having much less
TAE. In the tilt illusion, the spatial analogue of the TAE, we found a similar, though weaker, correlation. These
findings can be explained by a theory predicting that bias, caused by a change in the initial conditions of
evidence accumulation (e.g., priors), decreases with decision time (*Communications Biology 3 (2020) 1–12).
We contend that the context-dependence of visual processing is more homogeneous in the population than was
previously thought, with the measured variability of perceptual bias explained, at least in part, by the flexibility
of decision-making. Homogeneity in processing might reflect the similarity of the learned statistics.

1. Introduction

Visual context, from space and time, is known to influence the
processing of visual information. Using basic visual properties, such as
orientation, motion, and color, clear behavioral and electro-
physiological effects have been identified (Clifford & Rhodes, 2005;
Clifford et al., 2007; Gibson & Radner, 1937; Gibson, 1937; Kohn, 2007;
Lamme & Roelfsema, 2000; Webster, 2011, 2015). With orientation
features, the contextual orientation is known to lead to a perceptually
salient shift in the perceived orientation (Gibson & Radner, 1937;
Gibson, 1937; Schwartz, Hsu, & Dayan, 2007). When the context sur-
rounds a target, this phenomenon is referred to as the tilt illusion (TI,
Fig. 1A, Clifford, 2014; Gibson, 1937), and when the context precedes a
target in time, it is referred to as the tilt aftereffect (TAE, Fig. 1B,
Gibson & Radner, 1937; Webster, 2015). In both space and time
(Schwartz et al., 2007), a contextual orientation of 20° clockwise to
vertical leads to a counterclockwise shift in the estimated orientation, by
a few degrees (see Fig. 1).

Extensive theoretical work has been done to better understand such
context effects. Generally, context-dependent changes in visual pro-
cessing are thought to be functionally useful, despite some debate re-
garding details (Kohn, 2007; Schwartz, Snow, & Coen-Cagli, 2017;

Solomon & Kohn, 2014; Clifford, 2014; Webster, 2011). Possible ben-
efits include (a) self-calibration, constancy, or correction of a reference
“norm” (Andrews, 1964; Day, 1972; Dekel & Sagi, 2020a; Gibson &
Radner, 1937; Webster, 2011), (b) optimization of the neural code, such
as improved gain of computational units, improved coding sensitivity to
likely events, or decorrelation to remove coding redundancies (Benucci,
Saleem, & Carandini, 2013; Coen-Cagli, Kohn, & Schwartz, 2015;
Pinchuk-Yacobi & Sagi, 2019; Snow et al., 2017; Wei & Stocker, 2017),
and (c) enhanced attentional selection of novel or surprising events
(such events are presumably more likely to be important and hence
deserve more attention). However, these and other alternatives are not
necessarily mutually exclusive (e.g., orientation biases may reflect both
self-calibration and decorrelation, Clifford, Wenderoth, and Spehar
(2000)), and are not necessarily dependent on the neural im-
plementation (e.g., divisive normalization may underlie both code op-
timization and attentional selection, Carandini & Heeger, 2012).
However, two general observations can be made: First, theories seem to
differ based on the speculated purpose (Press, Kok, & Yon, 2020),
making perception more veridical (e.g., self-calibration), or less ver-
idical but better at a given task (e.g., code optimization). Second, the-
ories differ in how the effect is thought to depend on the computational
constraints of the system. That is, if the system were to have better
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computational abilities (e.g., more neurons, more neural bandwidth),
would context-dependent biases be less pronounced? For example, if
biases reflect calibration based on the “true” white (white balance) or
the “true” vertical, then it seems reasonable to assume that the biases
are not dependent on computational constraints, and rather, are de-
termined by a system-independent inference process (using stimulation
statistics, such as the average color or the orientation modes). Alter-
natively, if biases reflect a tradeoff between computational constraints
(such as limited bandwidth) and perceptual error, then we would ex-
pect less bias in a better system.

An interesting source of theory-diagnostic information can be ob-
tained by considering individual differences in vision (Grzeczkowski,
Clarke, Francis, Mast, & Herzog, 2017; Mollon, Bosten, Peterzell, &
Webster, 2017). In the TI, as well as in other spatial-context-dependent
biases, individual measures showed large differences (by an order of
magnitude), with strong test–retest reliability (Grzeczkowski et al.,
2017; Song, Schwarzkopf, & Rees, 2013). These differences were found
to be correlated with variability in orientation JND (just-noticeable-
differences, showing an R2 value of ~60%) and were thought to reflect
variability in the size of area V1 across individuals (Schwarzkopf, Song,
& Rees, 2011; Song et al., 2013). These results seem consistent with an
account of variability in terms of fixed neuronal constraints of low-level
vision. In the TAE, direct investigation of individuality has, to the best
of our knowledge, never been attempted, despite the large individuality
evident in the literature (Gibson & Radner, 1937; Knapen, Rolfs,
Wexler, & Cavanagh, 2010; Magnussen & Johnsen, 1986; Wolfe, 1984).

Importantly, we recently reported that context-dependent bias is
much stronger in fast compared with slow reaction times (RT) of an
individual (Dekel & Sagi, 2020b). This effect was largely independent of
orientation sensitivity (i.e., JND). Moreover, we suggested that this
within-observer variability in bias is explained by the theory that de-
cision makers integrate evidence over time to reduce error, with an
initial state of accumulation that is set by prior evidence favoring one
decision outcome over others (Gold & Shadlen, 2007; Ratcliff, 1978;
Ratcliff, Smith, Brown, & McKoon, 2016; Salkind, 2012). In such
models, bias, caused by the initial conditions, is expected to gradually
decrease with decision time owing to noise accumulation, leading to a
dramatic reduction of bias in slower decisions (Dekel & Sagi, 2020b;
Mulder, Wagenmakers, Ratcliff, Boekel, & Forstmann, 2012; Ratcliff &
McKoon, 2008; Summerfield & De Lange, 2014; White and Poldrack,
2014).

Here, we investigated individual differences in both TI and TAE, and
considered their previously unexplored interaction with RT.
Importantly, we found a strong negative correlation between TAE and
RT, and a similar albeit statistically weaker correlation between TI and
RT. These findings suggest that individual differences are based on RT,

which complements current knowledge of differences in terms of or-
ientation JND. This account is consistent with fixed low- and variable
high-level visual processing.

2. Methods

This study re-analyzed experimental data used in Dekel and Sagi
(2020b).

2.1. Observers

Twenty-nine observers (23 females, 6 males, age 18–40y) with
normal or corrected-to-normal vision participated in the experiments.
All observers were naïve to the purpose of the experiments, and pro-
vided their written informed consent. Most observers had prior ex-
perience of participation in psychophysical experiments, but during the
main experiment (TAE periphery), all observers short of one were new
to the task and the stimuli. The inclusion/exclusion criteria were the
same for all experiments: observers were recruited by advertisement,
and were refused participation if they did not pass an eye examination.
The number of daily repetitions and experiments per observer was
determined by the observers’ availability. The work was carried out in
accordance with the Code of Ethics of the World Medical Association
(Declaration of Helsinki) and was approved by the Institutional Review
Board (IRB) of the Weizmann Institute of Science.

2.2. Apparatus

The stimuli were presented on a 22″ HP p1230 monitor operating at
85 Hz with a resolution of 1600 × 1200 that was gamma-corrected
(linearized). The mean luminance of the display was 26 cd⋅m−2 (TAE
experiments) or 49 cd⋅m−2 (TI experiments) in an otherwise dark en-
vironment. The monitor was viewed at a distance of 100 cm.

2.3. Stimuli and tasks

The stimuli were presented using dedicated software. For the TAE
experiments, we used the “Psy” program developed by Yoram Bonneh.
For the TI experiments, we used a browser-based software described
in Dekel and Sagi (2020a), Dekel and Sagi (2020b). Estimations of
timing accuracy in both setups suggest single video-frame accuracy in
stimulus presentation on almost all trials, and RT measurements within
~10 ms of the true key-presses time.

All stimuli were presented on a uniform gray background. To begin
stimulus presentation in a trial, observers fixated on the center of the
display and pressed the spacebar (self-initiated trials). Responses were
provided using the left and right arrow keys. Observers were informed
that they are permitted to reply as fast as they wish, as long as reply
speed did not lead to cases where they were certain of the target tilt
(clockwise vs. counter-clockwise) but pressed the wrong key (finger
errors).

TAE experiments. The following presentation sequence was used
(Fig. 1B): a blank screen (600 ms presentation), a Gabor “adaptor” (i.e.,
context, oriented randomly in each trial −20° or +20° to vertical,
50 ms), a blank screen (600 ms), and a near-vertical Gabor “target”
(50 ms). Observers were instructed to inspect the adaptor and target
presentations, and then to report whether the orientation of the target
was clockwise or counter-clockwise to vertical (no feedback). Gabor
patches were 50% Michelson contrast, with a Gaussian envelope of
σ = 0.42° and a sine wavelength of λ = 0.3° having a random phase.
Two versions of the experiment were run: “periphery” and “fixation”,
referring to the retinal position at which both targets and adaptors were
presented. In the periphery experiment, adaptors and targets were
presented at either left or right of the fixation (at ± 1.8° eccentricity),
and the target was randomly presented either at the same side as the
adaptor (retinotopic measurement) or at the opposite side (non-

Fig. 1. Tilt illusion and tilt aftereffect. (A) In the tilt illusion (TI), an oriented
surround leads to a shift in perceived orientation. Right: the surrounding an-
nulus, oriented 20° clockwise to vertical, leads to a counterclockwise shift in the
perceived orientation of the center circle (the target). Left: the target without
surround, was provided as a reference for the reader and was not used in the
experiments. (B) In the tilt aftereffect (TAE), exposure to an oriented adaptor
(e.g., +20°) leads to a shift in the perceived orientation of a subsequently
viewed target (in the same direction as in TI).
Figure reproduced from Dekel & Sagi, 2020b
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retinotopic measurement). Targets were oriented from −12° to +12° in
steps of 2° (a total of 13 possible orientations). In the fixation experi-
ment, adaptors and targets were presented at the fixated center of the
display. Targets were oriented −9° to +9° in steps of 1° (a total of 19
possible orientations). In both versions of the experiment, four per-
ipheral crosses co-appeared with the target to improve the dis-
crimination between adaptor and target.

TI experiments. Stimuli (Fig. 1A right) consisted of a sine-wave
circular “target” (radius of 0.6°) and a sine-wave annulus “surround”
(width of 1.2°, and a gap of 0.15° from the central circle). Targets were
oriented from −9° to +9° in steps of 1°, with λ = 0.3° and a random
phase. Surrounding annuli were oriented randomly in each trial −20°
or +20°, with λ = 0.3° and a random phase. The contrast of the stimuli
was 100%. Observers were instructed to inspect the target, and to re-
port its orientation as clockwise or counter-clockwise to vertical (no
feedback). The target + surround stimuli were presented starting from
350 ms after the trial initiation (“TI no-jitter” experiment), or starting
from 450 ms ± up to 100 ms (“onset jitter” experiment), for a duration
of 200 ms.

2.4. Procedure

In all conditions, each daily session was preceded by a brief practice
block with easy stimuli (this practice was repeated until close-to-perfect
accuracy was achieved).

TAE experiments. Sessions consisted of blocks of 125 trials (lasting
~5 min), separated by 2-minute breaks of blank screen-free viewing. In
the periphery experiments, observers (N = 14) performed 3–8 daily
sessions, each with five blocks. In the fixation experiment, observers
(N = 12) performed a single session with six blocks.

TI experiments. Sessions consisted of blocks of 190 trials (lasting
~5 min), separated by 2-minute breaks of blank screen-free viewing.
Observers (N = 10 for the “TI no-jitter” experiment, and N = 10 for the
“onset jitter” experiment) performed a single session with five blocks.

Note that the number of observers in the main experiment in this
work (TAE in the periphery, N = 14) was relatively smaller than ty-
pically used to study individual differences. However, the number of
repetitions per observer was relatively large (3–8 daily sessions of 625
trials, see Fig. B.1), permitting higher precision in the individual mea-
surement. We did not observe large differences in TAE due to differ-
ences in the number of sessions. All experiments in this study, with the
exception of the “TI no-jitter” experiment, were previously analyzed for
the within-individual effects of RT (Dekel & Sagi, 2020b).

2.5. Analysis

2.5.1. Fitting the perceived orientation
The magnitude of TAE and TI was calculated based on the reported

orientation (clockwise vs. counterclockwise) of the near-vertical targets
(the Gabor patch for TAE, and the central sine-wave circle for TI). The
perceived vertical orientation (PV) is the interpolated orientation
having an equal probability for clockwise and counter-clockwise re-
ports (50%) of the target. The PV was found separately for each context
orientation (−20° and +20°). This was achieved by interpolation from
a fit to a cumulative normal distribution (with lapse rates) of the psy-
chometric function (the percent clockwise reports as a function of target
orientation). Psignifit 3.0 software (Fründ, Haenel, & Wichmann, 2011)
was used for fitting. Then, the TAE or TI magnitude was calculated as
half the shift in PV between the two opposing adaptor or surround
orientations (−20° vs. +20°), and, if relevant, averaged over the left
and right target positions and over the different daily measurements.

We noted that an alternative measure of bias, Biascrit_shift, described
in Appendix A (Eq. (A.1)), can be defined from signal detection theory
(Green & Swets, 1966). We found this alternative measure to be more
convenient for RT-based modeling (Dekel & Sagi, 2020b); however, we
preferred using the shift in the psychometric function because (i)

Biascrit_shift is less convenient in practical use because of its saturation
with a large bias, and, at least here, loss of most of the collected data
(i.e., using a single target orientation to calculate bias discards the data
of the other target orientations); (ii) the shift in the psychometric
function is expected to be more robustly correlated with RT, because,
based on the modeling, Biascrit_shift is inversely proportional to the
square-root of the time, whereas the shift in the psychometric function
is inversely linear with time; (iii) last but not least, we preferred using a
standard measure of TAE over a less standard one. Nevertheless, we
verified that the main finding reported here, of a lower TAE in the
slower observers, is found when measuring TAE using Biascrit_shift (Eq.
(A.1)) (data not shown).

To calculate JNDs (just noticeable differences), we used a multiple
of the interpolated inverse slope of the psychometric function at the PV
orientation. Specifically, we used the width of the interval over which
the fitted cumulative Gaussian function rises from Φ(−0.5) = 0.31 to
Φ(+0.5) = 0.69, corresponding to 1σ where σ is the fitted standard
deviation (or, put differently, to a performance of 69% correct or d' = 1
between the pair of orientations at the edge of the found interval). This
interval was corrected so that the upper and lower lapse rates (as
measured by the fit) do not affect the JND. Where relevant, JNDs were
calculated separately and then averaged over the −20° and +20°
contexts, over the left and right target positions, and over the different
daily measurements.

2.5.2. Reaction times (RTs)
As a measure of RT for an observer, we used the mean RT in trials

having a vertical target orientation (RTvert). The use of RTvert is moti-
vated by theory (see Eq. (A.11) in Appendix A, as well as Dekel and Sagi
(2020b)). To show that our findings are theory independent (see section
3.5), we also considered RTpv, the interpolated RT at the PV orientation
of the mean RT vs. target orientation function (using cubic interpola-
tion; interpolation done after averaging across daily measurements). In
addition, we considered RTmax, the mean RT at the slowest target or-
ientation. Where relevant, RTvert, RTpv, and RTmax were calculated se-
parately and then averaged over the −20° and +20° contexts and over
the left and right target positions. In addition, RTvert and RTmax were
averaged over the different daily measurements (with RTpv, averaging
across daily measurements was done prior to the interpolation).

2.5.3. Non-decision times (t0)
The modeling in Appendix A predicts the dependence of bias and

sensitivity on the duration of a decision process. In addition to this
“decision time”, the duration of RTs includes non-decision components,
such as the time it takes to press the response key. Here, we assume that
this “non-decision time”, t0, is fixed and independent of the decision
time (see Discussion). In addition, based on the RT distributions
(Ratcliff, 1978; Ratcliff et al., 2016), we estimated t0 to be approxi-
mately 350 ms in all observers of all experiments. To justify this sim-
plifying assumption, we used a software that fits the RT distributions to
the drift diffusion model (DDM; Fast-DM software, Voss and Voss
(2007)). Fitted values of the t0 model parameter somewhat differed
depending on fitting details (e.g., whether outliers are pruned, whether
the inter-trial variability parameters are enabled, and whether the used
trials were of a vertical target orientation or of a tilted target orienta-
tion). Generally, differences in t0 were small, between observers
(< 100 ms SD), and between experiments (~50 ms). Moreover, the
decision time, RTvert – t0, was mostly independent of t0. To accurately fit
the RT distributions with DDM, more trials are required. Finally, we
verified that using the differently fitted t0 values of each observer and
experiment leads to similar results as when using the fixed value of
350 ms.

2.6. Statistics

All statistical analyses were performed using MATLAB® R2019b
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software.
To obtain a measure for the statistical significance of individual

differences in a factor, we considered repeated measurements over
different days, fitting a linear mixed-effects model with one overall
intercept term and also one intercept term per observer, and reported
the significance of an F-test of the null hypothesis that the coefficients
of all observer terms are 0 (so only the overall intercept term remains).
This analysis is only applicable for the periphery experiment, requiring
multiple daily measurements. A similar linear model, fitting the in-
dividual identity as a random effect, was used to calculate the intra-
class correlation coefficient (ICC), obtained as

+

2

2 2 , where 2 is the

variance of the fitted observer coefficients, and 2 is the variance of the
linear model prediction errors (Nakagawa & Schielzeth, 2010).

To obtain a measure for the co-variation of two factors, we used the
Pearson correlation coefficient (R, or occasionally its square-root, R2,
which measures shared variation). The statistical significance was as-
sessed using the standard approach of applying a two-tailed t-test after
transforming the data using Fisher's z-transformation. An alternative
approach of using a linear mixed-effects model showed the same results
(with better significance), but it is only applicable for periphery data
with multiple daily measurements.

To fit Eqs. (1) and (2) we used the “fitnlm” MATLAB function, which
finds the least-squares fit. Fit quality was assessed by recording the
proportion of explained variation by the fit (R2), calculated by:

=R2 TSS RSS
TSS where TSS is the total sum of squares of the data and RSS

is the residual sum of squares (i.e., prediction errors). Note that R2 can
be negative when the variance of the prediction errors is larger than the
variance of the data.

3. Results

Using briefly presented Gabor patches (50 ms), we measured the
shift in the estimated vertical orientation of a near-vertical Gabor
(“target”), caused by previous exposure to a Gabor patch tilted −20° or
+20° to vertical (“adaptor”, 600 ms ISI) (Fig. 1B). This experiment was
performed using Gabor patches presented at the near-periphery ( ± 1.8°
eccentricity), permitting analysis based on the relative retinal positions
of the adaptor and the target: the same position (“Retinotopic”) or
contra-lateral positions (“Non-retinotopic”). The results for both re-
tinotopic and non-retinotopic measurements showed a shift in the
perceived orientation in the direction that is away from the adaptor
orientation, a phenomenon known as the tilt aftereffect (TAE).

The peripheral TAE measured large individual variability (see the y-
axis of Fig. 2), showing, in the peripheral retinotopic measurement,

magnitudes ranging from 0° to 2° (Mean ± SD of 1.04° ± 0.63°), and
a low measurement error (within-individual SEM over daily repetitions
of ~0.2°; daily repetition data at Fig. B.1). Statistically, the presence of
an individual component in TAE was significant (p = 1.9 × 10−12,
F(13,57) = 12.72, ICC = 0.63, using linear mixed-effects models, see the
Methods). The peripheral non-retinotopic measurement showed the
same, albeit at weaker TAE magnitudes (Mean ± SD of 0.33° ± 0.36°,
the individual component at p = 1.6 × 10-5, F(13,57) = 4.77,
ICC = 0.34).

3.1. Co-variation of RT and peripheral TAE

Importantly, reaction time (RT), measured for the vertical target
orientation and hence denoted RTvert, exhibited a dramatic individual
variation, with values ranging from 500 to almost 2000 ms (see the x-
axis of Fig. 2; Mean ± SD across observers of 920 ± 360 ms for the
peripheral retinotopic measurement). This range seems especially large
when taking into account the non-decision time, t0, which, based on the
RT distributions, we estimated to be about 350 ± 100 ms (Mean ±
SD across observers, see the Methods). Considering the different daily
repetitions (Fig. B.1), the presence of an individual component in RTvert

was statistically significant (p = 6.0 × 10−14, F(13,57) = 15.05,
ICC = 0.69, same for retinotopic and for non-retinotopic trials).

Remarkably, the variability in RTvert was strongly and negatively
correlated with the variability in peripheral TAE (Fig. 2), with the fast
observers having much more TAE than the slow observers. Specifically,
for the peripheral retinotopic measurement, we found TAEs of ~2° for
observers with RTs of ~500 ms, and close to zero TAE for observers
with RTs approaching 2000 ms (Fig. 2A) (R2 = 0.74, p = 8 × 10−5,
t(12) = -5.85, two-tailed t-test following Fisher's z-transformation, see
the Methods). The peripheral non-retinotopic measurement revealed
the same trend, albeit for weaker TAEs (Fig. 2B) (R2 = 0.52, p = 0.004,
t(12) = −3.61). Overall, variability in peripheral TAEs seems to be
largely explained by RTs.

3.2. Individual variability and decision times

To explain the co-variation of RT and TAE, we considered the idea
that decisions are made by an evidence-accumulation process with
biased initial conditions, which leads to reduced TAE with decision
time (see the Introduction and Appendix A) (Dekel & Sagi, 2020b). This
is a general argument, and depending on modeling details, it can pre-
dict different rates of reduction in bias. Here, we considered the case
where the rate of reduction in bias is inversely proportional to the
decision time (i.e., RT minus non-decision time), as in Eqs. (A.10) and

Fig. 2. Co-variation of RT and TAE: Shown is TAE as a function of the average RT for the vertical target, with each datum point corresponding to a different observer,
in the (A) peripheral retinotopic and (B) peripheral non-retinotopic measurement. Blue dashed lines denote fits to Eq. (1), and green dotted lines denote fits to Eq. (2),
when setting t0 = 350 ms. Error bars are SEM across daily repetitions.
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(A.16):

=
t

TAE tae
RT

0

vert 0 (1)

where tae0 is the bias constant, RTvert is the RT for a vertical target, and
t0 is the non-decision time (which reflects non-decision time compo-
nents, such as the time it takes to press a response key, Ratcliff and
McKoon (2008)). This equation reflects somewhat general assumptions
that are broader than those of a single model. For example, Eq. (1) is
predicted from an unbounded decision process (see Eq. (A.10)), and
also from a bounded decision process with variability in the size of the
separation between the bounds (see Eq. (A.16)). Note that Eq. (1) as-
sumes that the intrinsic orientation sensitivity (v0 in Appendix A) is
approximately fixed in the sampled population (see the relevant Results
section below, in the Discussion, and see Eq. (A.17)).

We also considered the possibility of a time-independent bias
component, tae∞, that is additive with the time-dependent bias of Eq.
(1):

= +
t

TAE tae
RT

tae0

vert 0 (2)

Time-independent bias can be mediated by a context-dependent
change in the rate of evidence accumulation (drift rate bias, see section
“time-independent bias” in Appendix A, and section “RT-independent
bias” in the Discussion).

To account for individual differences using Eqs. (1) and (2) (re-
sulting fits in Fig. 2), we assumed that tae0, tae∞ and the non-decision
time (t0) are approximately fixed in the population. Based on the RT
distributions, we set t0 = 350 ms (see section “Non-decision times (t0)”
in the Methods). Fitting tae0 to behavior using Eq. (1) showed that 50%
of the variability in peripheral TAEs can be explained by RT (re-
tinotopic and non-retinotopic measurements showing R2 = 0.50,
Fig. 2). Note that the reduction in bias predicted by the fitted model is
quite dramatic: from about 2° when RT = 500 ms, to about 0.5° when
RT = 2000 ms in the peripheral retinotopic TAE (Fig. 2A). Fitting both
tae0 and tae∞ using Eq. (2) showed similar R2 values compared with the
fit using Eq. (1) (peripheral retinotopic: R2 = 0.54 with
tae∞ = 0.25° ± 0.23°; peripheral non-ret.: R2 = 0.52 with
tae∞ = −0.11° ± 0.14°, Estimate ± SE).

3.3. Co-variation of RT and bias: The effects of experience

Next, we restricted the analysis of peripheral TAE to the first ex-
perimental session, to minimize potential interaction with perceptual
learning (Yehezkel, Sagi, Sterkin, Belkin, & Polat, 2010). Results
showed that the correlation between TAE and RTvert in the first session
is maintained, even stronger, than when measurements are averaged
across days (Fig. 3AC) (peripheral retinotopic: R2 = 0.68, p = 0.0005,
t(11) = −4.87, peripheral non-ret.: R2 = 0.5, p = 0.007, t(11) = −3.33;
one observer was not included in the analysis because of prior parti-
cipation in a similar experiment). Similarly, fitting to Eq. (1) showed
possibly better fits (peripheral retinotopic: R2 = 0.69, peripheral non-
ret.: R2 = 0.45). This finding suggests that perceptual learning does not
mediate the correlation of RTvert and TAE. The improved correlations
compared to when measurements are averaged across days may reflect
the larger variation in RTs (SD of ~550 ms compared with ~350 ms), or
possibly that aggregating measurements across days having different
RTs dilutes the observable effect of RT. Fits to Eq. (2) showed minor
increase in R2 compared with the fits to Eq. (1) (peripheral retinotopic:
R2 = 0.71 with tae∞ = 0.2° ± 0.21°; peripheral non-ret.: R2 = 0.48
with tae∞ = −0.2° ± 0.26°, Estimate ± SE).

In the last session per observer (Fig. 3BD; day 5 ± 2, Mean ± SD),
between-observer variation in RTvert was much reduced (SD of
~220 ms) compared with that on the first day, a typical effect of
practice (Harris & Sagi, 2018; Sagi, 2011); however, the correlation
with peripheral TAE was still significant for the retinotopic TAE case

(peripheral retinotopic: R2 = 0.6, p = 0.001, t(12) = −4.24; peripheral
non-ret.: R2 = 0.03, p = 0.5, t(12) = −0.66; exclusion of the same
observer as above leads to the same results). Fits to Eq. (1) showed non-
zero R2 values only for the retinotopic case, and the differences between
the fits to Eqs. (1) and (2) were small (see Fig. 3).

3.4. Co-variation of RT and bias at fixation (TAE and TI)

Next, we considered a TAE experiment, similar to the one above, in
which both adaptors and targets were presented at fixation, hence
measuring retinotopic adaptation. The results showed a similar nega-
tive correlation between RTvert and TAE; however, it was weaker than
observed in the periphery (Fig. 4A) (R2 = 0.39, p = 0.03,
t(10) = −2.51). We also considered two experiments that measured the
tilt illusion (TI, Fig. 1A, the spatial analogue of the TAE). The results
showed a negative correlation between RTvert and the TI, though again
the correlation was somewhat weak (Fig. 4BC) (TI no-jitter: R2 = 0.49,
p = 0.03, t(8) = −2.79; TI onset jitter: R2 = 0.47, p = 0.03,
t(8) = −2.66).

Interestingly, the fits of behavior to Eq. (1) were quite poor (dashed
blue lines in Fig. 4; Fixation TAE: R2 = 0.16, TI no-jitter: R2 = 0.06, TI
onset jitter: R2 = -0.43; the negative R2 value indicates that the pre-
diction errors had higher variance then the predicted behavioral data,
see the Methods). Importantly, fitting to Eq. (2), which include an RT-
independent bias term, tae∞, showed better fits (dotted green lines in
Fig. 4; Fixation TAE: R2 = 0.32 with tae∞ = 0.56° ± 0.37°; TI no-
jitter: R2 = 0.41 with tae∞ = 1.2° ± 0.55°; TI onset jitter: R2 = 0.37
with tae∞ = 1.53° ± 0.48°, Estimate ± SE). It can be observed that
the fitted RT-independent bias term was much larger than found for
peripheral TAE (tae∞ ≈ 0 in Figs. 2 and 3).

Overall, these findings replicate the observation made for peripheral
TAE (Fig. 2), albeit with a weaker effect. The weaker effect can be
possibly explained by (i) reduced variation in RTvert when tested at

Fig. 3. Co-variation of RT and TAE: the effects of experience with the task.
Same as Fig. 2, for the (A and C) first and (B and D) last experimental sessions,
of the (A and B) retinotopic and (C and D) non-retinotopic measurement of the
periphery experiment.
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fixation (compare x-axis of Figs. 2 and 4; “Fixation TAE”: SD of 200 ms,
“TI no-jitter”: SD of 175 ms, “TI onset jitter”: SD of 130 ms), (ii) less
data per observer (3–8 daily sessions for TAE in the periphery, a single
daily session for TAE in fixation and TI), or, most interestingly, (iii) the
existence of a large RT-independent component in TAE and TI in these
experiments, as indicated by the improved fits to Eq. (2) compared with
Eq. (1) (see the Discussion).

3.5. Reaction times for non-vertical targets

So far, we considered the RTs of the hard-to-decide vertical targets
(RTvert). For increasingly tilted target orientations, the task of dis-
criminating clockwise vs. counter-clockwise tilts is easier, and RTs were
faster (consistent with the offered model, see Appendix A and Palmer,
Huk, and Shadlen (2005)). For example, in peripheral retinotopic TAE,
the easiest target orientations ( ± 12°) measured RTs in the range of
400 to 800 ms (showing Mean ± SD of 550 ± 110 ms), which is
faster and less variable than found for the vertical targets (RTvert

showing 920 ± 360 ms; see x-axis of Fig. 2).
Importantly, under certain theoretical assumptions, context-depen-

dent shifts in the psychometric functions can be accompanied by cor-
responding shifts in the chronometric functions (by chronometric
function we refer to the target RT distribution as a function of target
orientation). For example, the psychometric and chronometric biases
are predicted to be identical if the TAE or TI are modeled as drift rate
biases in the drift diffusion model (Dekel & Sagi, 2020b). To show that
the correlations found here between TAE and RT are theory in-
dependent, we reproduced the correlation for the periphery experiment
when using the RT at the perceived vertical orientation (RTpv) (see Fig.
B.4, compare with Fig. 2). Moreover, the found values of RTpv and
RTvert were very similar (with peripheral retinotopic RTpv - RTvert

showing −4 ± 73 ms, Fig. B.4C). Using RTmax, the RT at the slowest
target orientation, showed the same (Fig. B.5). In addition, inspecting
the chronometric functions (Fig. B.6) should impress upon the reader
how small is the expected change in RT from a change in PV (if at all)
compared with the range of individual differences in RTs. Overall, the
large individual variation in RTvert (see x-axis of Fig. 2) is not a con-
sequence of a shift of the chronometric function.

3.6. Just noticeable differences (JNDs)

Using the orientation discrimination task, it is possible to obtain a
measure for orientation sensitivity (i.e., JND, just noticeable differ-
ences, calculated as a multiple of the interpolated inverse slope of the
psychometric function, see the Methods). Considering JNDs is inter-
esting given previous work suggesting that individual variability in TI
can be explained by individual variability in JNDs (Song et al., 2013)

(see the Discussion). Here, results in the different daily repetitions of
the periphery experiment (Fig. B.3) showed that individual differences
in JND are statistically significant (p = 3.2 × 10−6, F(13,57) = 5.40),
with somewhat low test–retest reliability (ICC = 0.37) (in this analysis,
the JNDs were averaged over the retinotopic and the non-retinotopic
trials). Importantly, the results did not show any correlation between
JND and TAE or TI (Fig. B.2) (periphery retinotopic: R2 = 0.01, per-
iphery non-ret.: R2 = 0.06, fixation: R2 = 0.01, TI no-jitter: R2 = 0.23
with p = 0.17, TI onset jitter: R2 < 0.01). Similarly, a negative cor-
relation between JND and RTvert, which is predicted by Appendix A,
was rather low (Fig. B.3) (TAE fixation: R2 = 0.31 with p = 0.06 for
t(10) = 2.10; TI no-jitter: R2 = 0.31 with p = 0.09 for t(8) = −1.89, all
other conditions: R2 ≤ 0.05; correlations of 1/JND with RTvert were
very similar). The lack of correlations with JNDs may be explained by
lack of variation in the sampled population, or to theoretical con-
siderations (see the Discussion).

3.7. Are fast decisions caused by biased initial conditions?

As evident from changing b in Eq. (A.11), biased starting points
inherently lead to faster decision times in the bounded decision model
(DDM), even when the bound separation (a) is fixed. However, a fixed
bound separation with a variable bias is unlikely to account for the
correlation of bias and RTs observed here for the following reasons. (i)
Fitting the peripheral retinotopic data to the DDM showed much better
fits when b is fixed in the population, compared with when a is fixed in
the population (log-likelihood of about −300 vs. −820; fits obtained
using an exhaustive search over the a and b alternatives, and, for each
alternative, finding the optimal drift rate and non-decision time using
the fast-dm software, Voss & Voss, 2007). The same was found when
using an unconstrained fit and correlating fitted a and b values with
behavioral RTvert (averaged within observer; correlation with a2:
R2 = 0.88, p = 7 × 10−7, t(12) = 9.39; correlation with b2: R2 = 0.01,
p = 0.72, t(12) = 0.36; again using fast-dm, but with a Kolmogorov-
Smirnov setting and minimal outlier pruning). (ii) The peripheral re-
tinotopic and non-retinotopic TAEs exhibited different magnitudes, but
almost identical RTs (see x-axis of Fig. 2) (difference between re-
tinotopic and non-retinotopic RTs showing Mean ± SE of
−42 ± 93 ms), suggesting a negligible influence of bias on RT. (In-
deed, this strong independence can be taken as evidence in favor of an
unbounded over a bounded decision process, consistent with Dekel and
Sagi (2020b)). (iii) Theoretically, as seen in Eq. (A.11), the b2 term is
subtracted from a large constant, so the range of possible RTs from
changing b is more limited than from changing a.

Fig. 4. Co-variation of RT and bias in fixation (TAE and TI). The same as Fig. 2, for (A) the fixation TAE experiment, (B) the TI experiment with a 200 ms presentation
duration and no onset jigger, and (C) the TI experiment with a 200 ms presentation duration with an onset jigger. All experiments show a weak but significant
correlation between bias magnitude and RT (p < 0.05).
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3.8. Co-variation of peripheral retinotopic and non-retinotopic TAEs

In the periphery experiment, the retinotopic and non-retinotopic
trials differed only in their relative target position, leading to very si-
milar RTs in the two trial types (R2 = 0.94 in the population; note that
retinotopic and non-retinotopic trials were mixed within block balan-
cing fatigue/motivation effects). Therefore, in the RT account of TAE
described above, almost identical RTs were used in the retinotopic and
the non-retinotopic cases (as evident in Fig. 2). Transitivity thus sug-
gests a correlation between retinotopic and non-retinotopic TAEs,
which was indeed found (Fig. 5) (R2 = 0.61, p = 0.001, t(12) = 4.35). A
similar, though non-significant correlation was found between the TI
and the fixation TAE effect magnitudes (five shared observers,
R2 = 0.45, p = 0.21, t(3) = 1.58). This correlation is consistent with the
idea of a common factor for similar visual phenomena (Grzeczkowski
et al., 2017). Here, the common factor seems to be explained by RT,
though a general account may also require other factors (such as JND,
see the Discussion).

The strong correlation of non-retinotopic TAE with RT (Fig. 2) and
with retinotopic TAE (Fig. 5) described above suggests that the non-
retinotopic effect is not negligible, despite having a very small average
magnitude (M = 0.33°, p = 0.005, t(13) = 3.42, two-tailed t-test; this
measurement is approximately consistent with previous reports,
Knapen et al., 2010).

3.9. Individual psychometric and chronometric functions

In the Methods and Appendix A, we make the standard assumption
that Φ−1(P+) is approximately linear in the target orientation, where
P+ is the probability of clockwise answers, and Φ−1 is the inverse cu-
mulative standard normal distribution function (see Macmillan and
Creelman (2004)). The assumption was used for the modeling, and
when fitting the psychometric function to a cumulative normal dis-
tribution for the purpose of measuring the TAE and the JND. To in-
vestigate if the assumption holds in the behavioral data, we consider
the psychometric functions of the main condition (retinotopic TAE in
the periphery). It can be observed that results (Fig. 6) indeed showed
close to linear increase in Φ−1(P+) as a function of target orientation,
for orientations around vertical, in practically all observers.

4. Discussion

4.1. RT-dependent bias

The results showed a large variability between individuals re-
garding their measured TAE magnitudes and moderate test–retest re-
liability. This variability is consistent with findings in earlier works for

other context-dependent biases (Grzeczkowski et al., 2017; Song et al.,
2013). The results also showed a large variation in RTs between in-
dividuals. In the periphery experiment, RTs ranged from ~500 ms to
~1800 ms when the target was vertical (Fig. 2). Importantly, the
variability in TAE was strongly and negatively correlated with varia-
bility in RT (see Figs. 2–4). For example, in peripheral retinotopic TAE,
the fastest observers had magnitudes of ~2°, whereas the slowest ob-
servers had almost no TAE. Note that here the time difference between
the adaptation and test is always fixed; therefore, a slower RT does not
correspond to increased adaptation decay (Greenlee & Magnussen,
1987; Magnussen & Johnsen, 1986). In the TI, we found similar albeit
weaker correlations with RT (Fig. 4).

To explain correlations between perceptual bias and RT, we offer a
quantitative theoretical framework based on known properties of
human decision making (evidence accumulation theories, Gold &
Shadlen, 2007; Ratcliff et al., 2016). The main idea considered in Ap-
pendix A is that bias reflects a change in the initial conditions, or priors,
of an evidence accumulation decision process. In order to achieve a
higher confidence level, decisions can be made slower, leading to in-
dividual differences in decision times. Importantly, we propose that the
initial conditions are approximately fixed in the population. Thus, with
increased decision time, the influence of the initial conditions is ex-
pected to be reduced, as measured by less bias in slower observers. To
summarize, we explain the individual differences in bias by observers
having different RTs (different confidence levels), but the same internal
prior (see fits to Eq. (1) in Figs. 2–4; note the fixed b in modeling in
Appendix A). This observation is important, both conceptually and
technically, for understanding individual differences in vision. For ex-
ample, when attempting to map the strength of measured aftereffects to
internal visual priors (Pellicano & Burr, 2012; Tibber et al., 2013; Yang
et al., 2013). Note that even when no evidence exists (e.g., a vertical
target orientation), we still expect the influence of the prior to be re-
duced with decision time (see Appendix A). An alternative account,
assuming a fixed decision bound with observer dependent bias, was
much worse in explaining the current data (see the Results).

Behaviorally, we speculate that RT-dependent bias is consistent
with mechanisms that calibrate visual perception. For example, a prior
for the reference frame of an object that is gradually updated based on
object details. With spatial context, as in the tilt illusion, “prior” is
reasonable in terms of coarse-to-fine processing. Such priors can be
determined by probabilistic inference using stimuli statistics, and re-
main largely invariant to neuronal constraints.

Recently, we used the same theoretical framework to explain RT-
dependent bias within-individual, for the same experimental data (al-
most, see the Methods) (Dekel & Sagi, 2020b). The between- and
within-individual effects are not necessarily a consequence of the same
mechanism, so we were happy to find an explanation for both phe-
nomena that is motivated by the same principles. Of course, the
translation of theoretical concepts into psychological or physiological
properties is somewhat speculative. We do not necessarily explain why
some individuals are fast and others are slow, and the causal link be-
tween RT and perceptual bias remains speculative. Our hypothesis may
be investigated in future work by manipulating the speed-accuracy
tradeoff. It remains to be seen whether a fast and biased observer can
become slow and unbiased given appropriate instructions. Note that in
the periphery experiment, the number of daily repetitions differed be-
tween observers (see Fig. B.1). Importantly, the correlation of RT and
TAE was observed in the first daily session when the observers were
naïve (Fig. 3AC), and also in the last session when the observers were
practiced (for the peripheral retinotopic TAE, Fig. 3B).

4.2. RT-independent bias

In evidence accumulation theories of the kind considered in this
work, decision bias can be classified into two types: “start point bias”
(bias reflecting a change in the initial conditions of evidence

Fig. 5. Co-variation of retinotopic and non-retinotopic TAEs in the periphery
experiment. Non-retinotopic TAE is shown as a function of retinotopic TAE, for
different observers, averaged across daily repetitions. Error bars are SEM across
repetitions.
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accumulation), and “drift rate bias” (bias reflecting a change in how
evidence is accumulated) (Summerfield & De Lange, 2014). The former
predicts time-dependent bias, as in Eq. (1). The latter usually predicts
time-independent bias, unlike observed behaviorally. Importantly, be-
havioral biases such as TAE and TI may reflect a sum over different
underlying mechanisms (Bao & Engel, 2012; Dekel & Sagi, 2020a).
Possibly, not all bias mechanisms are RT-dependent. Consequently, Eq.
(2) extends Eq. (1) with an additive RT-independent bias component
reflecting a context-dependent change in the rate of evidence accu-
mulation (see Appendix A). Fitting using Eq. (2) showed much im-
proved fits than observed with Eq. (1) for the TI experiments (Fig. 4BC),
possibly in agreement with the within-individual analysis considered in
(Dekel & Sagi, 2020b).

4.3. Interpretations of fitted parameters

Eqs. (1) and (2) have three parameters: t0, tae0, and tae∞. The t0 is
interpreted as the non-decision time, that is, all the non-decision factors
such as stimulus encoding and motor movements (Ratcliff et al., 2016).
Values of t0 can also include decision components that are not included
in DDM (Rüter, Sprekeler, Gerstner, & Herzog, 2013). Note that t0 is
obtained from the RT distributions (see the Methods), not by fitting of
Eqs. (1) or (2). For simplicity, we used a fixed value of 350 ms for t0 for
all observers of all experiments (see the Methods). The tae0, based on
the Appendix A modeling, is a ratio between the starting point (b) and
the intrinsic sensitivity (v0) parameters (see Eqs. (A.8) and (A.14)). The
starting point parameter, b, quantifies bias independently of differences
in sensitivity and in RT, conceptually similar to how bias is quantified
by values of the SDT criterion in a way that can be independent to
differences in d′ (Green & Swets, 1966). The intrinsic sensitivity para-
meter, v0, maps this bias into the stimulus space (orientation). This
intrinsic sensitivity parameter does not show RT dependence, and,
combined with RT, determines the JND (Eqs. (A.9) and (A.13); see
below). The tae∞ parameter can be interpreted as the component(s) of

the bias that are time-independent (discussed above, see Discussion on
RT-independent bias).

4.4. Orientation sensitivity (JND)

Context-dependent biases can be positively correlated with mea-
sured orientation sensitivity (JND), both within-observer (Solomon &
Morgan, 2006), and between observers (TI: Song et al., 2013, color and
face aftereffects: Mattar, Carter, Zebrowitz, Thompson-Schill, &
Aguirre, 2018). A JND-dependent bias can be predicted in evidence
accumulation theories from individual differences in the rate (Eq.
(A.17)) or the duration (Eqs. (A.10) and (A.16)) of the evidence. Similar
to bias, the decision time is also predicted to be (negatively) correlated
with JND (Eqs. (A.10) and (A.16)). However, here the results showed
no correlation between JND and either TAE/TI or RT between observers
(see the Results). We consider three ways to explain the lack of a strong
correlations with JND in this work. First, by the smaller variation in
JNDs in the sampled population here (approx. 0.5° to 2°) compared
with previous work (approx. 0.5° to 6° in Song et al., 2013; note that
their JND values are for 70.7% correct, while here JND values are for
69% correct, a negligible discrepancy). The smaller variation in JNDs
found here may be attributed to measuring JNDs for perceived or-
ientation (no physical reference), to rapid saturation of perceptual
learning within the first session, or to the sampled population, which
consisted of observers from the same age group (18–40) with compar-
able visual acuity (6/6). Second, by a discrepancy between the as-
sumption using both models that the evidence is fixed in time, and the
experiments, where the evidence was temporary (a target presentation
duration of 50 ms for TAE and 200 ms for TI, with possibly a few
hundred more milliseconds of persistence). This observation warrants
caution when using simple models to interpret behavior. We emphasize
that, for the purpose of this work, the analysis of RT and bias should be
robust to a dynamic reduction in the evidence, because the found de-
pendence of bias on RT persists in the case where there is no evidence

Fig. 6. Individual psychometric functions. Shown, for each observer in the retinotopic peripheral TAE measurement, are the four measured psychometric functions
corresponding to two adaptor orientations (−20° and +20°) and two sides of visual field (left and right of fixation, ± 1.8° eccentricity). Probabilities were clipped to
the range ,n

n
n

1
2

2 1
2 , where n is the number of trials in a measurement. The written TAE and RT values were reproduced from Fig. 2A. It can be observed that around

vertical (0°), the measured +P( )1 is approximately linear in target orientation.
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(i.e., v = 0; see Appendix A). Third, by reduced effect size when in-
dividual differences are measured using JND compared with RT or TAE.
(That is, less between-observer variability compared to the within-ob-
server measurement error.) Indeed, measured intra-class correlations
(ICC) showed lower values for JND compared with retinotopic TAE and
RT (0.37 compared with 0.63 and 0.69, respectively). Theoretically,
reduced effect size for JND in the relevant measurement range is pre-
dicted from the Appendix A modeling (because JND squared is used in
the proportionality equations, see Eqs. (A.10) and (A.16)). Generally,
we expect a full account of individual variation in context-dependent
bias to depend on both RT and JND.

4.5. Spatially non-selective TAE

Previous work suggested that the average TAE is very weak in non-
retinotopic settings (i.e., when the adaptor and the target are presented
at different retinal positions) (Knapen et al., 2010). We replicated this
finding, but importantly, we found that the non-retinotopic TAE was
strongly correlated with both RT (Fig. 2) and retinotopic TAE (Fig. 5).
These findings suggest that the effect is more important than previously
thought.

There is an ongoing attempt in the literature to classify measured
biases as “perceptual” or “decisional” (e.g., Fritsche, Mostert, & de
Lange, 2017; Morgan, 2014). While this classification is meaningful
only within specific theoretical frameworks, we wish to make three
general points. Firstly, that the kind of bias studied here – the TAE and
the TI – is clearly at least partially perceptual (lends itself to visual
experience), as evident by self-experimentation (try at Clifford, 2014;
Thompson & Burr, 2009). This claim is supported by experiments

(Morgan, 2014; Patten & Clifford, 2015). Secondly, that in the per-
iphery experiment, we did not observe any qualitative difference be-
tween retinotopic and non-retinotopic TAEs, beyond a difference in
magnitude. That is, both TAEs decayed to ~zero with increasing RTs,
between and also within observers (Dekel & Sagi, 2020b). In addition,
combinations of TAEs were well explained by additivity, regardless of
retinotopicity (Dekel & Sagi, 2020a). Thirdly, that this work describes
individual difference in measured TAE/TI explained as a consequence
of a decisional factor (confidence), but, the starting point, that ac-
cording to our analysis is stable across observers, we would like to
believe is a sensory (“perceptual”) factor.
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Appendix A. Modeling using evidence accumulation

We consider two simple decision models that rely on accumulated evidence to make decisions, and try to estimate how model parameters relate
to the behavioral measures of bias, sensitivity, and decision time. The models assume a temporal integration of evidence, at a fixed rate, with an
initial state of accumulation that is set by prior evidence favoring (biasing) one decision outcome over others (Ratcliff, 1978; Ratcliff et al., 2016;
Summerfield & De Lange, 2014) The integration of evidence is either stopped when a decision bound is reached (bounded model), or not (unbounded
model), as detailed below. The modeling relies on signal detection theory (SDT, Green & Swets, 1966).

In the analysis, we make the following definitions: First, (·)1 is the inverse cumulative standard normal distribution function. In addition,
Biascrit_shift is the bias (e.g., TAE) measured by the shift of an internal criterion between the contexts (Dekel & Sagi, 2020b; Green & Swets, 1966):

= + +c c P PBias ( , ) ( ) ( )c c
crit_shift 1 2

1 , 1 ,1 2 (A.1)

where +Pc ,1 is the probability of clockwise answers for target orientation θ under context c1 (e.g., a vertical target and a −20° adaptor exposure), and
+Pc ,2 is the same for context c2 (e.g., the same target and a +20° adaptor exposure).

Finally, the orientation sensitivity between the orientations +θ and −θ, namely d ( )' , can be defined as:

= +
+

+d P P( ) ( ) ( )c' 1 , 1 c, (A.2)

where +
+Pc, is the probability of clockwise answers for target orientation +θ under a given context c (e.g., a +0.5° target and a −20° adaptor

exposure), and +Pc, is the same for target orientation -θ (e.g., a −0.5° target and the same adaptor).
We define JND (just noticeable difference) to be the inverse of d′(θ) evaluated at 2. Based on the experimental results (Fig. 6), we assume that

+( )Pc1 ,1 is linear in target orientation θ (see Macmillan and Creelman (2004)). Thus, d’(θ) is linear in θ, with a proportionality constant that is the
JND: =d ( ) 2

JND . Rearranging, we get:

=
d

JND 2
( )' (A.3)

Similarly, from the linearity of +( )Pc1 ,1 in , we get:

= c c
d

TAE Bias ( , )·
( )

crit_shift 1 2 ' (A.4)

where TAE is bias measured in degrees (half the shift of the psychometric function between the contexts).
Unbounded model. Here, we consider a simple case without decision bounds (an unbounded model). Thus, we assume some process of evidence

accumulation that is equivalent to a simple random walk (a Wiener process) that starts from point b (which is a scalar) and gradually diverges due to
stochastic diffusion (noise) and drift v (the delta of evidence being accumulated at each time point). We expect the influence of the starting point of
the random walk to diminish at a rate proportional to the square-root of the time. The probability density of the random walk at decision time t is a
normal distribution with mean +b v t· and variance t·2 , namely, N +b vt t( , )2 , where 2 is the variance per unit time. Therefore,
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= + = + = ++P b vt
t

b vt
t

b
t

v t( )1
2 (A.5)

where +P is the probability of the process being positive at time t.
The bias in the internal criterion (Biascrit_shift) is given by the change in +P( )1 due to the context (see Eq. (A.1)), which is modeled as a change in

the starting point (+b compared with –b):

= = + + =+ +c c P P b vt
t

b vt
t

b
t

Bias ( , ) ( ) ( ) ( ) 2c c
crit_shift 1 2

1 , 1 ,1 2
(A.6)

And, similarly, the sensitivity (d′), given by the change in +P( )1 due to a change in the stimulus (+θ compared with −θ) (Eq. (A.2)), is modeled
as a change in the drift rate (+v compared with –v):

= = + + =+
+

+d P P b vt
t

b v t
t

v t( ) ( ) ( ) ( ) 2c c' 1 , 1 ,
(A.7)

Using Eqs. (A.3)–(A.7), we obtain:

= = = =c c
d

b
t t

b
vt

b
v t

TAE Bias ( , )· 2
( )

2 · vcrit_shift 1 2 ' 2
0 (A.8)

= = = =
d t v t v t

JND 2
( )

2
v' 2

0 (A.9)

where v0 is the intrinsic sensitivity, defined as =v v
0 . Note that v0 is independent of , because, based on the assumptions above, d ( )' is linear in θ,

so the drift rate v of a target oriented θ is linear in θ.
We now consider how the different behavioral measures are predicted to change based on individual differences in the decision time t, when the

intrinsic sensitivity (v0) and the starting point (b) are assumed to be fixed in the population. Based on Eqs. (A.8) and (A.9), we get = ( )OTAE b
v t0

and

= ( )OJND v t
1

0
, where O (·) is big-O notation for the variables b, v0, and t. Therefore, when v0 and b are fixed in the population, the following

proportionality is predicted:

t
TAE JND 12

(A.10)

Note that the unbounded model does not explain the decision time itself, only how the decision time affects bias and sensitivity.
Bounded model (DDM). An alternative approach of modeling decision processes in the brain, which also explains decision times, is to assume that

there are decision bounds. When the accumulated evidence reaches a bound, the process is stopped and a decision is made. Here we considered the
standard bounded drift diffusion model (DDM, Gold & Shadlen, 2007; Ratcliff & McKoon, 2008; Ratcliff & Smith, 2015; Ratcliff et al., 2016; see
mathematical background at Luce (1986), Shalden, Hanks, Churchland, Kiani, and Yang (2006)). The DDM can be defined using four parameters: the
drift rate (v), bound separation (a), starting point (z), and non-decision time (t0). In this description, the bounds are at 0 and a, and the process starts
from the point z. We also define b as the distance of the starting point from the midpoint between the bounds: =b z a

2 .
Using Eq. (A.12) from (Palmer et al., 2005) for the case v = 0, we get: =TE[ ] AB

vert 2 where TE[ ]vert is the expected decision time of vertical targets
(for both upper and lower bounds), A and B are the distances from the starting point to the upper and lower bounds, respectively, and is the
diffusion coefficient parameter that is usually set to a fixed value of 1 (Palmer et al., 2005). Therefore, using + =A B a and = = +B z ba

2 , and also
assuming that b

a
is not too large so a2 is much larger than b2, we get:

=
+

=
( )( ) ( )

T
b b b aE[ ]

4

a a

vert
2 2

2

a
2

2 2

2

2

2 (A.11)

Moreover, using Eq. (A.6) from (Palmer et al., 2005) again for v = 0, we obtain = = ++ +P B
A B

b
a

1
2 , where +P is the probability to reach the upper

bound. Because +( )x x21 1
2 for small x values, we expect that when b

a
is not too large, it will approximately hold that

= ++ ( )P( ) 2b
a

b
a

1 1 1
2 . The bias, given by the change in +P( )1 due to a change in context (+b compared with –b, see Eq. (A.1)), for the case

where =v 0, is given by:

= + +c c P P b
a

b
a

b
a

Bias ( , ) ( ) ( ) 2 2 ( ) 5·c c
crit_shift 1 2

1 , 1 ,1 2
(A.12)

We consider now the task sensitivity. Using Eq. (A.13) from (Palmer et al., 2005) for the case of an unbiased starting point (b = 0), we obtain

=+
+

P
e

1

1 va/ 2 . This is a logistic function, and thus, we can approximate it by =+
+

( )P( ) ·
e

v a1 1 1

1

1
2 2

·
va

2
2 . As such, the sensitivity (d′), given

by the change in +P( )1 due to a change in stimulus (Eq. (A.2)), when b = 0, is given by:

= +
+

+d P P v a v a va( ) ( ) ( ) 1
2 2

· ( )· 5
4

·c c' 1 , 1 ,
2 2 2 (A.13)

Although Eq. (A.12) was derived when there is a small b
a

value and v = 0, and Eq. (A.13) was derived when b = 0, we found the approximations
to be reasonably robust in the relevant parameter range (Fig. B.7).

Using Eqs. (A.3), (A.4), (A.12), and (A.13), the different behavioral measures can be approximated as following:
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= = =
d va v a

JND 2
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4
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4

2 2

02 (A.15)

where =v v
0 is the intrinsic sensitivity (as above). Based on Eqs. (A.11), (A.14) and (A.15), we obtain T O aE[ ] ( )vert

2 , ( )OTAE b
v a0 2 , and

( )OJND v a
1
0

, where O (·) is big-O notation for the variables b, v0, and a. Therefore, from individual differences in the bound separation (a), and
when assuming that the intrinsic sensitivity (v0) and the starting point (b) are fixed in the population, the following proportionality is predicted:

TE
TAE JND 1

[ ]
2

vert (A.16)

where TE[ ]vert is the mean decision time for the vertical target.
In terms of the SPRT (Sequential Probability Ratio Test, Moran, 2015; Summerfield & De Lange, 2014; Wald, 1945), which is a standard Bayesian

interpretation of the DDM, an increased bound separation corresponds to requiring lower type I and type II error rates, but starting from the same
prior value (the b parameter). Hence, it seems reasonable to assume that the starting point remains the same when the bounds are changed.
Specifically, in the DDM, when one of the decision alternatives is more likely than the other (having prior probabilities p and 1-p), it can be shown

that the optimal placement of the starting point that minimizes the total error is given by =b v

log

4

p
p1 for σ = 1, which is independent of the bound

separation (a). (The influence of the likelihood ratio p
p1

on decision making has long been investigated using SDT, see e.g. Green and Swets (1966);
we noted that an alternative modeling to the one offered here is to assume that the likelihood ratio p

p1
, rather than the starting point b, is fixed in the

population.)
Time-independent bias. In all of the above modeling, we assumed that the TAE only results from a change in the starting point of the process

(bounded or unbounded), leading to time-dependent bias. However, it is possible that the context leads to a change in both the starting point and the
drift rate (see Dekel and Sagi (2020b)). In this sense, Eqs. (A.10) and (A.16) model the time-dependent component, with the total TAE having an
additional time-independent, possibly additive, component. Indeed, if the change in drift rate is fixed across target orientations, then the time-
independent component is equivalent to a shift of the psychometric function, and hence the time-dependent and time-independent components are
additive. It is straightforward to edit Eqs. (A.10) and (A.16) to include an additive and time-independent TAE component.

Final remarks. As shown above, both models can predict the same dependence on decision time (Eqs. (A.10) and (A.16)). It is worthwhile to
mention two important ways in which these models are over-simplified. First, both models assume zero noise at t = 0, which is clearly impossible in
a biological system. Second, both models assume that the evidence is fixed in time; however, in many experiments (and here), the evidence is
temporary (see the Discussion). Importantly, although modeling these constraints leads to a more complicated analysis, the TAE value is still
expected to be reduced with decision time.

In addition, it seems interesting to extend the above analysis by considering individual differences in the intrinsic sensitivity (v0) in addition to
the decision time (t). For the unbounded model, based on Eqs. (A.8) and (A.9), we obtain = ( )OTAE b

v t0
and = ( )OJND v t

1
0

, as above. Therefore,
individual differences in both v0 and t, assuming that the starting point (b) is fixed in the population, lead to the following proportionality:

=
t t

TAE 1 JND

t
1

JND· (A.17)

The same proportionality is found in the bounded model (DDM), for individual differences in the bound separation (a) and the intrinsic sen-
sitivity (v0), assuming a fixed starting point (b).

Appendix B. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.visres.2020.08.002.
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