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9. Lie algebras

An algebra A is a linear vector space over a field, with a binary operation
of multiplication — for every X, Y ∈ A, there is an element X ·Y ∈ A. If the
field is the real numbers, the algebra is called a real algebra; if the field is the
complex numbers, it is called a complex algebra. The multiplication is linear
and distributive [(aA+bB) ·(cC+dD) = acA ·C+adA ·D+bcB ·C+bdB ·D,
where A,B,C,D are vectors in the space and a, b, c, d are elements of the
field], but need not be associative or commutative. The dimension of the
algebra is its dimension as a vector space, the number of independent vectors
required to form a basis for the algebra. The algebra contains a null vector
0, such that 0 · A = 0 for any element A of the algebra.

A subspace of the vector space which is closed under the multiplication
operation constitutes a subalgebra of the algebra. Every algebra contains
two improper subalgebras — the algebra itself and the null algebra consisting
entirely of the null element, {0}. Any other subalgebra is a proper subalgebra.

If the multiplication rule

• is antisymmetric, X · Y = −Y ·X for every X, Y ∈ A, and

• satisfies the Jacobi identity, X · (Y ·Z) + Y · (Z ·X) + Z · (X · Y ) = 0,
for any three elements X, Y, Z ∈ A (note that the cyclic order X, Y, Z
is maintained in the Jacobi identity),

then it defines a Lie product. One concrete example of a Lie product is the
usual vector product of three-dimensional vectors.

[~a×~b = −~b× ~a; ~a× (~b× ~c) +~b× (~c× a) + ~c× (~a×~b) = 0].

Another concrete realization of the Lie product is the familiar commutator:

[[A,B] = −[B,A]; [A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0].

as may be seen by simply writing out the commutators in full.

A Lie algebra is an algebra in which the multiplication is a Lie product.
The commutator is so common as a realization of the Lie product, and its use
within the framework of matrix representations of Lie algebras so widespread
in physics, that the standard notation used for the Lie product of two ele-
ments A,B is [A,B]. This notation will be used from now on, but it should be
noted that it may, in some contexts, cause confusion. As a rule, [A,B] should
be considered primarily as the Lie product of the elements A,B, though it
may also represent their commutator.
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[The infinitesimal generators of a Lie group span a vector space
which is invariant under commutation, since the commutator of
any two generators is a linear combination of the generators.
Defining the Lie product of two elements of this vector space
as their commutator makes the space a Lie algebra, as mentioned
previously.]

A Lie algebra may contain proper Lie subalgebras. A subalgebra B is
Abelian if the Lie product of any two elements vanishes, i.e. [X, Y ] = 0 for
all X, Y ∈ B. A subalgebra B ⊂ A is invariant if the Lie product of any of its
elements with any element of the algebra is in the subalgebra, i.e. [X, Y ] ∈ B
for any X ∈ B, Y ∈ A. An invariant subalgebra is also called an ideal.

The centre of a Lie algebra is the set of elements whose Lie product with
all elements of the algebra vanishes. (In more familiar terms, the set of
elements which commutes with all elements of the algebra is the centre of
the algebra.) The centre is an Abelian ideal of the algebra.

A Lie algebra is simple if it is non-Abelian and contains no proper ideals,
semi-simple if it contains no Abelian ideals except the null subalgebra {0}.
A simple algebra is semi-simple. It can be proved that a semi-simple Lie
algebra is a direct sum of simple Lie algebras.

[The direct sum of two algebras is analogous to the direct product
of two groups. If A and B are Lie algebras of dimensions da and
db respectively, with bases {Ai} and {Bi} respectively, and the
Lie product of any basis element of A with any basis element of
B vanishes, [Ai, Bj] = 0, then the vector space spanned by the
basis {Ai, Bj; i = 1, . . . , da; j = 1, . . . , db} constitutes the algebra
A⊕ B, of dimension da + db.]

Consider the Lie algebra A of dimension d and let it have a basis {Xi},
with i = 1, . . . , d. Since the algebra is closed under the Lie product,

[Xi, Xj] =
d∑

k=1

ckijXk, (1)

where the coefficients ckij are called the structure constants of the algebra and
determine its structure completely.
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[Note carefully the positions of the indices on ckij — the subscripts
are the indices of the factors of the Lie product, in the same order
in which the factors appear, and the superscript is the index of
the appropriate basis vector in the expansion of the product.]

From the antisymmetry of the Lie product and from the Jacobi identity it
satisfies, the structure constants satisfy the conditions

ckij = −ckji (2)

d∑
l=1

(cmil c
l
jk + cmjl c

l
ki + cmklc

l
ij) = 0, (3)

since the basis vectors are linearly independent.

To every element A of the Lie algebra A there corresponds a linear op-
erator on the algebra, denoted ad(A) and defined by ad(A)X = [A,X] for
every X ∈ A. The set of all such operators constitutes a Lie algebra of the
same dimension d as the original algebra A, in which the Lie product is the
commutator.

[The notation ad(A)ad(B) implies consecutive action of the ad
operators, from right to left, and the Lie product is defined as
[ad(A), ad(B)] = ad(A)ad(B)− ad(B)ad(A).]

There is a natural mapping A→ ad(A) which preserves the Lie product.

[ad([A,B])X = [[A,B], X] = [A, [B,X]]+[B, [X,A]] = ad(A)ad(B)X−
ad(B)ad(A)X = [ad(A), ad(B)]X for all X ∈ A, i.e. ad([A,B]) =
[ad(A), ad(B)], where the Jacobi identity has been used in the
second step.]

The algebra of operators ad(A) is therefore a representation of the algebra A,
known as the adjoint representation. If {Xi} is a basis forA, then {ad(Xi)} is
a basis for the adjoint representation and the matrix elements of the adjoint
representation are the structure constants, (ad(Xk))ij = cikj.

[ad(Xi)Xj =
∑

k(ad(Xi))kjXk, but ad(Xi)Xj = [Xi, Xj] =
∑

k c
k
ijXk,

so (ad(Xi))kj = ckij.]

The representation matrices of the adjoint representation constitute a
faithful representation of the algebra, with the same structure constants.
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[Consider ([ad(Xk), ad(Xl)])ij =
∑

m(ad(Xk))im(ad(Xl))mj

−
∑

m(ad(Xl))im(ad(XK))mj and insert the structure constants,
so ([ad(Xk), ad(Xl)])ij =

∑
m(cikmc

m
lj−cilmcmkj) =

∑
m cimjc

m
kl, using

eqs.(2) and (3). This implies ([ad(Xk), ad(Xl)])ij =
∑

m cmkl(ad(Xm)ij.]

With the aid of the adjoint representation, a very useful invariant bilinear
form can be defined on any Lie algebra. The Killing form is defined by

gAB = tr(ad(A)ad(B)), for any two elements A,B of the algebra, (4)

involving the trace of the simple product (in terms of consecutive action) of
two operators of the adjoint representation. Because of the cyclic invariance
of the trace, the Killing form is symmetric, gAB = gBA, and invariant in the
sense that g[A,B]C = gA[B,C].

[tr(ad([A,B])ad(C)) = tr(ad(A)ad(B)ad(C)−ad(B)ad(A)ad(C)) =
tr(ad(A)ad(B)ad(C)−ad(A)ad(C)ad(B)) = tr(ad(A)ad([B,C])),
where the cyclic invariance of the trace has been used in the sec-
ond step.]

It can be shown to be the unique such invariant bilinear form, up to a mul-
tiplicative constant.

The Killing form for the basis vectors {Xi} may be rewritten in terms of
the structure constants,

gij = tr(ad(Xi)ad(Xj)) =
d∑

k,l=1

ckilc
l
jk. (5)

A Lie algebra is semi-simple if and only if its Killing form is non-degenerate,
i.e. has a non-vanishing determinant. This is called the Cartan criterion.

[Suppose the algebraA is not semi-simple, i.e. contains an Abelian
ideal I. Select a basis for I and supplement it with additional
basis vectors to complete a basis for A. The basis is denoted {Xi}
and the basis vectors of I are distinguished by primes. Since I
is an ideal, [Xi′ , Xj] ∈ I, which implies the structure constants
cki′j = 0 if Xk /∈ I. The index k must carry a prime, k′, for the
structure constant to be non-zero. Since I is Abelian, [Xi′ , Xj′ ] =
0, which implies the structure constants cki′j′ = 0 for any k. Now
consider the Killing form gij′for an arbitrary basis vector Xi and
a basis vector Xj′ ∈ I and apply these two results systematically
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to gij′ =
∑

kl c
k
ilc

l
j′k =

∑
kl′ c

k
il′c

l′

j′k =
∑

k′l′ c
k′

il′c
l′

j′k′ = 0. This holds
for any i, for given j′, so a whole column of gij vanishes and
det g=0. If A is not semi-simple, its Killing form is degenerate.
The converse was proved by Cartan.]

For semi-simple Lie algebras, the Killing form gij has an inverse, which is
denoted gij, with raised indices.

A related structure constant may be defined by

cijk =
∑
l

gilc
l
jk. (6)

Upon insertion of the expression (5), and by use of the Jacobi identity, this
becomes cijk =

∑
lmn c

m
inc

n
lmc

l
jk =

∑
lmn(cminc

n
jlc

l
km +cmnic

l
mjc

n
lk). The right hand

side of this expression is manifestly invariant under cyclic permutations of
i, j, k. But the left hand side is antisymmetric under interchange of j and
k, by (2). So the new structure constant cijk is totally antisymmetric in its
three indices (i.e. it changes sign under interchange of any pair of indices).
For semi-simple Lie algebras, the defining relation (6) can be inverted,

cijk =
∑
l

gilcljk. (7)

[Note how gij and gij play the familiar formal role of raising and
lowering indices here.]

Given a Lie algebra, only the Lie product of two elements of the algebra
is defined — the simple product of two elements is not defined within the
algebra. However, in any representation of the algebra in terms of opera-
tors on a vector space or in terms of matrices, the simple product of two
representative elements is defined, either as the consecutive operation of two
operators or as the matrix product of two matrices. So in any representation
of a semi-simple Lie algebra it is possible to define the Casimir operator

C =
d∑

i,j=1

gijXiXj, (8)

where d is the dimension of the algebra, {Xi} is a basis for the algebra and
gij is the inverse of the Killing form for the basis vectors. This operator
commutes with all the elements of the algebra.
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[The commutator [C, Xk] =
∑

ij g
ij[XiXj, Xk] =

∑
ij g

ij(Xi[Xj, Xk]+

[Xi, Xk]Xj) =
∑

ijl g
ij(cljkXiXl + clikXlXj) =

∑
ijl g

ijcljk(XiXl +

XlXi) =
∑

ijlm gijglmcmjk(XiXl + XlXi), where use has been
made of the fact that i, j are dummy indices and of eq. (7). If, in
the final expression, the dummy indices i, l are interchanged and
so are the dummy indices j,m, the product gijglm remains un-
changed, as does the sum XiXl + XlXi, while the antisymmetric
structure constant cmjk changes sign. The commutator is equal
to minus the commutator, i.e. it vanishes.]

Racah generalized the notion of Casimir operator to operators of higher
order, defining nth order invariants by

Cn =
∑

cj2i1j1c
j3
i2j2

. . . cj1injng
i1l1gi2l2 . . . ginlnXl1Xl2 . . . Xln , (9)

where the summation is over all repeated indices. These operators commute
with all elements of the semi-simple Lie algebra, [Cn, Xm] = 0. Note that the
Casimir operator defined in eq.(8) is C = C2.

A real Lie algebra is said to be compact if its Killing form is negative
definite. A compact algebra is necessarily semi-simple. Complex Lie algebras
are non-compact.
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