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6. Irreducible representations

It has been shown that no irrep of G can have dimension larger than |G|.
Even more stringent restrictions may be placed on the properties of irreps
with the aid of two very powerful results known as Schur’s lemmas.

Schur’s first lemma states that if D
(1) and D

(2) are irreps of a group G
and if there exists a matrix A such that D(1)

R A = AD(2)
R for all R ∈ G then

D
(1) and D

(2) are equivalent (i.e. A is invertible) or A = 0.

[Suppose that D
(1) and D

(2) have different dimensions. Then by
the reducibility criterion one of them is reducible — a contradic-
tion. So A must vanish. If they both have the same dimension d
and {ψi} form a basis for D

(1), then the set {
∑d

j=1 Ajiψj} spans

an invariant subspace of the carrier space of D
(2). If this set is lin-

early independent, then A is non-singular and D(1)
R = AD(2)

R A−1

for all R ∈ G — the two irreps are equivalent. If the set is not
linearly independent, then D

(2) is reducible, a contradiction which
can only be avoided if A = 0.]

Schur’s second lemma states that if D is an irrep of the group G and
there exists a matrix A which commutes with all the DR, i.e. ADR = DRA
for all R ∈ G, then A is a multiple of the unit matrix, A = λ1.

[ADR = DRA for all R ∈ G =⇒ (A − λ1)DR = DR(A − λ1)
for all R ∈ G. This can be regarded as a special case of Schur’s
first lemma, for the case of equal dimensions, and implies that
A−λ1 is either invertible or equal to zero. But det(A−λ1) = 0,
regarded as an equation for λ, has at least one solution (possibly
complex). For such a λ, the matrix A − λ1 is not invertible, so
it must vanish, implying A = λ1.]

Using Schur’s lemmas, some remarkable orthogonality relations can be
derived. Let D be an irrep of dimension d of the group G of order g. Con-
struct the matrix A =

∑
S∈G DSXDS−1, where X is an arbitrary matrix. A

commutes with DR for every R ∈ G.

[ADR =
∑

S∈G DSXDS−1DR =
∑

S∈G DSXDS−1R

=
∑

S∈G DRR−1SXDS−1R =
∑

S∈G DRDR−1SXDS−1R

= DRA, using the rearrangement theorem.]

Therefore A = λ1. Choose the special matrix Xij = δilδjm, for certain fixed
values of l,m (between 1 and d), and denote the corresponding λ by λlm.
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Then
∑

S∈G(DS)il(DS−1)mj = λlmδij . To evaluate λlm, set i = j and sum
over i, namely λlmd =

∑
S∈G(DS−1S)ml = gδlm =⇒ λlm = gδlm/d. Finally,∑

S∈G(DS)il(DS−1)mj = gδlmδij/d. For a unitary irrep, this can be rewritten∑
S∈G(DS)il(DS)∗jm = gδlmδij/d.

To complete the result, consider two inequivalent irreps D
(1),D(2). Then

the matrix A =
∑

S∈G D
(2)
S XD(1)

S−1, for any X , satisfies D(2)
R A = AD(1)

R for
all R ∈ G, which implies A = 0. Choosing the same special X as above,∑

S∈G(D(2)
S )il(D(1)

S−1)mj = 0, which may be rewritten
∑

S∈G (D
(2)
S )il(D(1)

S )∗jm = 0
for a unitary irrep. The two results may be combined to conclude that, for all
inequivalent irreps D

(µ),
∑

R∈G(D(µ)
R )il(D(ν)

R−1)mj = gδµνδijδlm/dµ. Once again,

for unitary irreps, this can be rewritten
∑

R∈G(D(µ)
R )il(D(ν)

R )∗jm = gδµνδijδlm/dµ.

[If µ is not the unit irrep, while ν is the unit irrep, this result

implies
∑

R∈G(D(µ)
R )ij = 0, a useful sum rule for non-unit irreps.]

The last result can be understood as an orthogonality relation for the
g-dimensional vectors (D(µ)

R )ij , one vector for each choice of indices i, j, µ.
There are

∑
µ d

2
µ such mutually orthogonal g-dimensional vectors with non-

zero norms, so
∑

µ d
2
µ ≤ g. There can be only a finite number of inequivalent

irreps of a finite group and their dimensions are strongly limited.

In the orthogonality relation, it is possible to set i = l, j = m and to sum
over i, j to obtain an orthogonality relation for characters,

∑
R∈G χ

(µ)
R χ

(ν)∗
R =

gδµν . (This is the form appropriate for unitary irreps.) If G has nc classes,

with the kth class containing gk elements, this can be rewritten
∑nc

k=1 gkχ
(µ)
k χ

(ν)∗
k =

gδµν .

[As before, this result specialises to
∑

k gkχ
(µ)
k = 0 if µ is not the

unit irrep.]

Then, for given µ, {√gkχ
(µ)
k } form a non-zero nc-dimensional vector. In-

equivalent irreps provide mutually orthogonal vectors, so the number of in-
equivalent irreps is less than or equal to the number of classes.

Suppose a reducible representation D is decomposed into irreps as D =∑
µ aµD

(µ), where the aµ are non-negative integers. Taking the trace of this

equation, χk =
∑

µ aµχ
(µ)
k =⇒

∑
k gkχ

(µ)∗
k χk = gaµ =⇒ aµ =

∑
k gkχkχ

(µ)∗
k /g.

It follows that two representations with the same set of characters are equiva-
lent, so the set of characters completely defines a representation. By a similar
argument,

∑
k gkχkχ

∗
k = g

∑
µ a

2
µ ≥ g and

∑
k gk|χk|2 = g if and only if D is
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irreducible (since then only one aµ can be non-zero and must equal 1). This
is a practical and very useful criterion of reducibility.

It was shown earlier that the class operator C, defined in the group algebra
by the sum C =

∑
R over all elements of the kth class Kk of a group G,

commutes with all elements of the group. Given a representation D
(µ)(G), the

corresponding matrix C =
∑

R∈Kk
D(µ)

R commutes with all the representation

matrices D(µ)
R . In the case of an irrep, by Schur’s second lemma, this matrix

must therefore be a multiple of the unit matrix, λ
(µ)
k 1. Taking the trace of C,

it follows that λ
(µ)
k = gkχ

(µ)
k /dµ, where dµ is the dimension of the irrep and

gk is the number of elements in Kk. The eigenvalues of the class operators
can also serve to characterise an irrep.

An important representation, which has been previously mentioned, is
the regular representation, where the elements of the group are looked at
as basis vectors of the group algebra and the effect of a group element on
a given basis vector is to transform it into a different basis vector (except
for the identity element, which leaves every basis vector unchanged). The
corresponding representation matrices have only 1 and 0 as entries, with every
row and every column containing only a single 1. The identity element E is
represented by the unit matrix, while all other representation matrices have
only zeroes on the main diagonal. This is a g-dimensional representation,
with characters χE = g, χR6=E = 0. It satisfies

∑
k gk|χk|2 = g2 > g, so it is

reducible. If it is decomposed into irreps, labelled µ, then χk =
∑

µ aµχ
(µ)
k

for the kth class. For the class of the identity, this reads g =
∑

µ aµdµ,
where dµ is the dimension of the irrep µ. But by the general result above,

aµ =
∑

k gkχkχ
(µ)∗
k /g = dµ, so that g =

∑
µ d

2
µ, turning the previously dervied

inequality into an equality. This is a significant limitation on the number and
dimensions of irreps of a group G.

Suppose there are r inequivalent irreps of a group G having nc classes. It
was shown above, on the basis of the orthogonality relation for characters,
that r ≤ nc. It is also possible to prove a second orthogonality relation
for characters, namely

∑r
µ=1 χ

(µ)
i χ

(µ)∗
j = gδij/gi, where gk is the number of

elements in the kth class. For a given i, the {χ(µ)
i } form an r-dimensional

vector with non-zero norm. There are nc mutually orthogonal such vectors,
so nc ≤ r. Hence r = nc — the number of inequivalent irreps of a group is
equal to the number of classes it has. As a corollary to this result, it follows
that all irreps of an Abelian group are one-dimensional.

[In an Abelian group, each element is a class in itself, so nc = g.
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Since
∑nc

µ=1 d
2
µ = g, dµ = 1 for all µ.]

Let H be an invariant subgroup of G. There is a natural homomorphism
of G to the factor group G/H — each element R ∈ G is mapped to its coset
RH ∈ G/H. Any irrep of the factor group G/H is an irrep of the group G
via this homomorphism.

If a group G is a direct product of two groups G1,G2, so that R ∈ G can
be written R1R2, Ri ∈ Gi, then the irreps of G are given by the irreps of
G1,G2, the basis of the former being the direct product of the bases of the
latter. The representation matrices are (D(µ,ν)

R1R2
)ij,kl = (D(µ)

R1
)ik(D(ν)

R2
)jl and

the characters are χ
(µ,ν)
R1R2

= χ
(µ)
R1
χ

(ν)
R2

. The classes of the direct product group
are the products of classes of the component groups.

It has already been seen that any vector ψ on which the elements of a
group G of order g can act will generate an invariant subspace of dimension at
most g through {DRψ,R ∈ G}. This subspace will carry a representation of
G, which is generally reducible. By an appropriate sequence of basis changes,
the representation can be fully reduced to block diagonal form, in which each
submatrix along the diagonal is part of an irrep. The original vector ψ can
be expressed in terms of the new basis as ψ =

∑
µ,i φ

(µ)
i , where φ

(µ)
i is a

function belonging to the ith row of the irrep µ, i.e. DRφ
(µ)
i =

∑
j D

(µ)
ji φ

(µ)
j .

So the set of basis vectors for the irreps of G is complete — any vector
can be expressed in terms of it. The operator P

(µ)
i = dµ

∑
R∈G(D(µ)

R )∗iiDR/g
is a projection operator on functions belonging to the ith row of the irrep
D

(µ), while P (µ) = dµ

∑
R∈G χ

(µ)∗
R DR/g is a projection operator on functions

belonging to the irrep D
(µ).

If D is an irrep of G, then so are D (the conjugate or adjoint irrep) and
D

∗ (the complex conjugate irrep), in which the representation matrices are
respectively the transpose of the inverse or the complex conjugate of the
original representation matrices of D. For a unitary irrep D, D = D

∗. Note
that χR = χR−1 . There are three possibilities — D can be made real, or
D is equivalent to D

∗ but cannot be made real, or D is inequivalent to D
∗.

The first kind of representation is called an integer representation and has
real characters; the second is called a half-integer representation and has real
characters; while the third kind of representation has complex characters
(not real). It can be shown that the number of irreps with real characters is
equal to the number of classes which contain the inverses of all their elements.
(These are known as ambivalent classes.) Since permutations and their in-
verses have the same cycle structure, all classes of Sn are ambivalent, so all
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6. Irreducible representations 5

irreps of Sn have only real characters. It can be proved that
∑

R∈G χR2 = cg,
where c = +1,−1, 0 respectively for the three kinds of representations listed
above. The trivial unit irrep is always an integer representation.

Examples

1. Consider the cyclic group C2 = {E,A} of order g = 2. It is Abelian,
so it has 2 irreps, each of dimension one. One is the trivial unit irrep,
χ

(1)
E = 1, χ

(1)
A = 1. The other must be orthogonal to this irrep, so it must be

χ
(2)
E = 1, χ

(2)
A = −1. Both are integer irreps.

2. Consider the cyclic group C3 = {E,A,A2} of order g = 3, also Abelian,

with three one-dimensional irreps. The unit irrep is χ
(1)
E = 1, χ

(1)
A = 1, χ

(1)
A2 =

1. The other two must be orthogonal to this irrep and to one another.
Since the irreps are one-dimensional and multiplication is preserved in a
representation, χA2 = (χA)2 and χA = χA4 = (χA2)2 for all irreps. So (χA)3 =

1. Denote ǫ = e2πi/3. Then the remaining irreps are χ
(2)
E = 1, χ

(2)
A = ǫ, χ

(2)

A2 =

ǫ2 and χ
(3)
E = 1, χ

(3)
A = ǫ2, χ

(3)
A2 = ǫ. They are both complex representations.

(Note that ǫ∗ = ǫ2.)

3. Consider the group of symmetries of the equilateral triangle, to be
denoted T = {1, r1, r2, m1, m2, m3}, of order g = 6. It has three classes,
{1},{r1, r2} and {m1, m2, m3}, hence three irreps. One is the unit irrep,
χ(1)R = 1 for all R ∈ T , so the remaining two satisfy d2

2 + d2
3 = 5. The only

possible solution is d2 = 1, d3 = 2, so χ
(2)
1 = 1, χ

(3)
1 = 2. The subgroup R =

{1, r1, r2} is invariant, with cosets {1, r1, r2}, {m1, m2, m3}, and the factor
group is C2, whose irreps are known. By the natural homomorphism, the
second irrep of T is seen to be χ

(2)
1 = 1, χ

(2)
2 = 1, χ

(2)
3 = −1. By orthogonality,

the last irrep is deduced to be χ
(3)
1 = 2, χ

(3)
2 = −1, χ

(3)
3 = 0. All three irreps

are integer representations.

[Recall that T is isomorphic to the symmetric group on 3 objects,
S3. The second one-dimensional irrep can be recognised as the
alternating irrep of S3. Vectors or functions transforming under
Sn as the unit irrep are called totally symmetric; those transform-
ing as the alternating irrep are called totally antisymmetric; those
transforming as any other (higher-dimensional) irrep are said to
be of mixed symmetry.]

Irreps are frequently displayed in character tables, where the columns are
labelled by the classes of the group (and the number of elements in each class
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is often noted) and each row corresponds to a different irrep. The entries in
the resulting matrix are the characters of the classes in each irrep. The above
three examples have the character tables:

C2 class {E} {A}
no. of elements 1 1

1 1
1 -1

C3 class {E} {A} {A2}
no. of elements 1 1 1

1 1 1
1 ǫ = e2πi/3 ǫ2

1 ǫ2 ǫ

S3 class {1} {r1, r2} {m1, m2, m3}
no. of elements 1 2 3

1 1 1
1 1 -1
2 -1 0

In checking the orthogonality of characters, it is important to remember
the gk weighting of the columns and the complex conjugation of complex
characters.
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