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5. Representations of groups

Consider a set W of elements {x}. The set could be finite, infinite or
even continuous. (For instance, it could be a vector space.) A transforma-
tion of the set is a one-to-one mapping of the set onto itself. Relative to
multiplication defined as consecutive action of transformations, the set of
transformations of W is a group.

[The consecutive action of two transformations clearly produces
a transformation. Consecutive action of mappings is associative.
Mapping every element x ∈ W into itself is obviously an identity
transformation. One-to-one onto mappings have inverses, so each
transformation has an inverse.]

If the set W is finite, having n members, then a transformation is a per-
mutation of the elements of W and the group of transformations is just the
symmetric group on n elements, Sn.

Now consider a group G, its elements being {R}. The action of G on the
set W is defined as a homomorphism of G to the group of transformations of
W. This means that each R ∈ G is mapped into a transformation TR of W
in such a way that TRS = TRTS for all R, S ∈ G.

[Note that the transformations T act on elements of W, mapping
x → T(x). Preservation of multiplication by the homomorphism
means TRS(x) = TR(TS(x)). The elements of the group G do not
generally act directly on W. However, for reasons of economy,
this distinction is frequently blurred, so one speaks of R and S
acting on W and writes RSx = R(Sx). Such statements should
be understood as a shorthand for the more precise definition of
the action of G on W.]

Suppose the action of a group G on a set W has been defined. The orbit
of the element x ∈ W is the subset {Rx, for all R ∈ G} of W. It includes
x itself. Let y 6= x be an element of the orbit of x. By closure of G (and
the product-preserving property of the homomorphism), the orbit of y is the
same as the orbit of x. (Note again the role of the rearrangement theorem.)
Belonging to a specified orbit is an equivalence relation, so the action of G
partitions W into distinct orbits.

Consider further the set of elements of G which, acting on W, map a given
x ∈ W to itself. This set is closed under multiplication, so it is a subgroup
of G. It is called the isotropy group or stabiliser of x and denoted Gx.
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An interesting special case occurs when the set W is the group G itself.
In this case, the statement that elements of G act on W is not just convenient
shorthand, but is precise. Two specific actions are of particular interest. In
the first, TRS = RS, i.e. the action is left multiplication of group elements.
(The homomorphism property is ensured by associativity of group multipli-
cation.) The whole group is a single orbit; the stabiliser of every element
R ∈ G is the unit group {E}. In the second action, TRS = RSR−1, i.e. the
action is conjugation of group elements. The orbits of the action are the
classes of G; the stabiliser of an element R ∈ G is its normaliser NR.

Transformations of a set can be represented by matrices. First consider
a finite set W with d elements and a transformation Txi → xT (i), where
{T (1), T (2), . . . , T (d)} is a permutation of {1, 2, . . . , d}. The matrix T is
defined by rewriting x′i =

∑d
j=1 Tjixj , where Tij = δi,T (j). Now apply two con-

secutive transformations, T and U, to W, UTxi → UxT (i) → xU(T (i)). Using
the corresponding matrices, UTxi =

∑d
j=1 TjiUxj =

∑d
j=1 Tji

∑d
k=1 Ukjxk =

∑d
k=1(UT )kixk, using standard matrix multiplication. So the product of

transformations UT is represented by the product of matrices UT . Note
also that (UT )ij =

∑d
k=1 δi,U(k)δk,T (j) = δi,U(T (j)), or (UT )(j) = U(T (j)). The

association of transformations with matrices preserves multiplication. The
matrices constitute a group.

The action of G on W, together with the association of a matrix with
each transformation, defines a homomorphism of G to the group of represen-
tative matrices. This is called a (matrix) representation of the group. The
dimension of the representation is the dimension of the matrices, which is
just the number d of elements of the set W.

Alternatively, and this will be the focus of attention from now on, the
set W could be a vector space, to be denoted V henceforth. For applica-
tion to physics, the vector space should be equipped with an inner prod-
uct. The transformations of the vector space are required to be linear —
T(aψ1 + bψ2) = aTψ1 + bTψ2. It is still possible to associate a matrix with
every transformation of the vector space, by choosing a basis {ψi} for the
space and expressing the effect of the transformation on the basis vectors
with the aid of a matrix. For each ψi, the vector Tψi is expanded in terms of
the basis vectors, Tψi =

∑d
j=1 Tjiψj . For a vector space of dimension d, this

defines the d× d matrix T .

Now consider

TUψi =
d
∑

j=1

UjiTψj =
d
∑

j=1

d
∑

k=1

UjiTkjψk =
d
∑

k=1

(T U)kiψk.

Introductory Algebra for Physicists Michael W. Kirson



5. Representations of groups 3

The matrix representing the product of transformations TU is the product
of the matrices representing T and U. Once again, a matrix representation
of the group is obtained, of dimension equal to the dimension of the vector
space V. The vector space is said to carry the representation and is called a
carrier space.

[Important! Pay special attention to the order of the indices
i, j in the equations defining the matrices, for both the finite set
W and the vector space V. The indices of the matrix appear
to be “backwards”. This is not a mistake. If the more intu-
itive order of indices were chosen, the order of multiplication of
matrices representing a product of transformations would be re-
versed. A simple mnemonic is provided by the Dirac notation,
T|i〉 =

∑

j |j〉〈j|T|i〉 =
∑

j Tji|j〉.]

Formally, a representation of a group G is a homomorphism from G to
a group T(G) of linear transformations on a vector space V, called the car-
rier space of the representation. (If the homomorphism is an isomorphism,
the representation is said to be faithful.) Each of the operators in T(G)
may be represented as a matrix, in terms of a suitable basis for V, and the
resulting set of matrices, themselves forming a group, constitute a matrix
representation of G. The dimension of the carrier space, and hence of the
matrices, is called the dimension of the representation. A group may have
many different representations of many different dimensions. The representa-
tive operator corresponding to an element R ∈ G will henceforth be denoted
DR, its matrix DR. When no confusion can arise, DR will be abbreviated to
R.

A change in the basis of the vector space V will generally change the
representative matrices D, as would a one-to-one mapping of V to another
vector space V ′ of the same dimension. Such changes are implemented by
a similarity transformation D → SDS−1. However, these are clearly not
essentially different representations. Representations which are related by a
similarity transformation of the representative matrices are called equivalent
representations.

Equivalent representations will generally have different representative ma-
trices. There is a useful property of a representation matrix that is the same
for all equivalent representations. This is the trace of the matrix, the sum
of all its diagonal elements, which exhibits cyclic invariance — the trace of
a product of matrices is invariant under cyclic permutation of the factors.
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[tr(ABC · · ·W ) =
∑

i,j,k...,r AijBjkCkl . . .Wri is clearly unchanged
under a cyclic permutation of its factors, since the dummy indices
retain the form ij jk kl l . . . r ri.]

As a consequence of its cyclic invariance, the trace is unchanged under simi-
larity transformation: tr(SDS−1) = tr(S−1SD) = trD.

The trace of the matrix representing an element R of the group is called
the character of that element in the given representation and is denoted χR.
It is the same in all equivalent representations. All elements of a given class
have the same character, again because of the cyclic invariance of the trace.

[tr(DBAB−1 = tr(DBDADB−1) = tr(DADB−1DB) = tr(DAB−1B) =
tr(DA).]

The identity element is represented in any representation by the unit
matrix, so its character is the dimension of the representation. The set of
characters of the classes of a group, in a given representation, can be viewed
formally as a vector (χ1, χ2, . . . , χk) in a space of dimension equal to the
number of classes in the group. It characterises the representation.

Given an arbitrary vector φ ∈ V, the elements R ∈ G act on it to produce
a set of vectors {DRφ} ∈ V which is closed under the action of G. This set
of vectors generates a subspace V ′ ⊂ V which is invariant under the action
of G (i.e. for any ψ ∈ V ′ and for any R ∈ G, DRψ ∈ V ′) and which carries a
representation of G. The dimension of this representation cannot exceed |G|.
Clearly any invariant subspace (relative to G) carries a representation of G.

[A one-dimensional representation is carried by a one-dimensional
vector space, i.e. the set of all multiples of a single basis vector.
The carrier space is invariant under the group — DRψ = DRψ
for R ∈ G, where DR is a number in the field over which the
vector space is defined (in practice, a complex number), so that
χR = DR. Note that it is the vector space spanned by ψ which is
invariant under G, not ψ itself, which is a simultaneous eigenvec-
tor of all the DR. Since, in any representation, DRn = (DR)n for
any integer n, in a one-dimensional representation χRn = (χR)n.
Suppose the element R ∈ G is of order r, i.e. Rr = 1. Then, in
a one-dimensional representation, (χR)r = χ(1) = 1, so χR is an
rth root of unity, χR = e2πim/r for some integer m, and |χR| = 1
for every R ∈ G.]
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Note, in passing, that the vectors {f} carrying a representation of a
group G with elements {Ri} may be functions of arguments {r} on which
the group elements act. The transformed function [DRf ](r) is defined to
have the same value for argument r as the original function f(r) had for
the argument that was transformed into r, i.e. [DRf ](r) = f(R−1r). Then
[DR2

f ](r) ≡ f ′(r) = f(R−1
2 r) =⇒ [DR1

DR2
f ](r) = [DR1

f ′](r) = f ′(R−1
1 r) =

f(R−1
2 R−1

1 r) = f((R1R2)
−1r) = [DR1R2

f ](r), and multiplication is preserved.

Suppose V is a finite-dimensional vector space (with an inner product)
which carries a representation D of the finite group G. Denote the inner
product by (x, y), for any pair of vectors x, y ∈ V. If (DRx,DRy) = (x, y)
for every R ∈ G and every pair x, y ∈ V, then the representation is unitary
and the representative matrices satisfy DRD

†
R = 1 = D†

RDR. Not every rep-
resentation is unitary. But consider the alternative inner product defined on
V by 〈x, y〉 =

∑

R∈G(DRx,DRy)/|G|. (It is not hard to show that this is an
acceptable inner product.) Now 〈DRx,DRy〉 =

∑

S∈G(DSDRx,DSDRy)/|G| =
∑

S∈G(DSRx,DSRy)/|G| = 〈x, y〉, by the rearrangement theorem, so the rep-
resentation is unitary with respect to the new inner product. For any finite-
dimensional representation of a finite group, there is an inner product which
makes the representation unitary.

Assume bases {ui} and {vi} have been chosen for the carrier space which
are orthonormal relative to the original inner product and relative to the new
inner product, respectively. An arbitrary vector z ∈ V is written z =

∑

i ziui,
in terms of its components in the u basis. Define the transformation T on V
by vi = Tui for all i. Then Tz =

∑

i ziTui =
∑

i zivi has the same components
in the v basis as z has in the u basis. This implies 〈Tx, Ty〉 =

∑

i x
∗
i yi = (x, y).

Introduce the equivalent representation D
′
R = T−1

DRT , for all R ∈ G. It sat-
isfies (D′

Rx,D
′
Ry) = (T−1

DRTx, T
−1

DRTy) = 〈DRTx,DRTy〉 = 〈Tx, Ty〉 =
(x, y) for any R ∈ G, so it is unitary with respect to the original inner prod-
uct. Any finite-dimensional representation of a finite group (on a carrier
space with a given inner product) is equivalent to a unitary representation
(with respect to the same inner product). Unless otherwise stated, it will
henceforth be assumed that the representations of finite groups under dis-
cussion are unitary.

Consider a representation in a space V of dimension d. If it is possi-
ble, by an appropriate transformation of the basis of V, to bring all the

representation matrices into the form

(

D(1)
R AR

0 D(2)
R

)

, where D(1),D(2) are

square matrices of dimensions d1, d2 < d, then the representation is said to
be reducible. Since products of matrices of this form retain the same form,
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D
(1),D(2) are separately representations of the group, of lower dimension than

the original representation. The subspace of vectors of V whose last d2 com-
ponents vanish is invariant under the group. In general, if the carrier space of
a representation contains a subspace invariant under the action of the group,
then the representation is reducible.

If the off-diagonal submatrices A of a reducible representation can be
made to vanish, the representation is said to be fully reducible. In this case,
the complementary space to the invariant subspace is also invariant. The car-
rier space has been divided into invariant subspaces. This is always possible
when the initial representation is unitary.

[Let V be the carrier space of a unitary representation D of the
group G and let W be a subspace of V invariant under the action
of the group. Denote by W⊥ the orthogonal complement of W,
so that v ∈ W, w ∈ W⊥ =⇒ (v, w) = 0, in terms of the inner
product of V. Given w ∈ W⊥, then for any R ∈ G and for every
v ∈ W (DRw, v) = (DRw,DRDR−1v) = (w,DR−1v) = 0, since D is
unitary and W is invariant. So DRw ∈ W⊥ for all R ∈ G and all
w ∈ W⊥, i.e. W⊥ is an invariant subspace.]

Every reducible representation of a finite group is fully reducible, and
the carrier space is divided into two distinct invariant subspaces, each car-
rying one of the reduced representations. This procedure can be continued
until it is no longer possible to break any of the carrier subspaces into in-
variant subspaces. The resulting “smallest” representations are then said
to be irreducible. The original representation takes block diagonal form,
with only irreducible representations occurring along the diagonal. These
irreducible representations need not all be different from one another — an
irreducible representation D

(ν) may occur aν times (where equivalent repre-
sentations are counted as multiple occurrences). This is expressed by writing
D =

∑

ν aνD
(ν), with non-negative integers aν .

[Note: Since the term “irreducible representation” occurs very
often in discussions of algebraic structures, it is frequently ab-
breviated as “irrep”. This convention will be adopted from now
on.]

Since the set {DRψ}, for all R ∈ G and for any vector ψ on which the
group acts, spans an invariant subspace, it follows that no irrep of G can
have a dimension larger than |G|. It is evident that every group has a trivial
one-dimensional irrep, referred to as the unit irrep, in which every element
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of the group is mapped into unity and all characters are 1. Every group
of permutations containing odd elements has an additional one-dimensional
irrep, the alternating irrep, in which every permutation is mapped into its
alternating character and all characters are ±1.

[The basis vector of the unit irrep satisfies DRψ = ψ, for allR ∈ G.
It is therefore invariant under the action of the group. Conversely,
any invariant vector is a basis for the unit irrep. The operator
∑

R∈G DR, an element of the group algebra, acting on an arbitrary
vector ψ, produces an invariant vector (by the rearrangement
theorem), unless the result vanishes.]

Assume D(G) is a representation of dimension d on the vector space V
with basis {ψi}. If D is reducible, there is an invariant subspace V ′ with
basis {φi} carrying a representation D

′ of dimension d′ < d. Since V ′ ⊂ V,
φi =

∑d
j=1 aijψj . Acting with an element R ∈ G on the left side of this

equation produces
∑d′

j=1(D
′
R)jiφj =

∑d′

j=1(D
′
R)ji

∑d
k=1 ajkψk, while acting on

the right side produces
∑d

j=1 aij
∑d

k=1(DR)kjψk. Since the {ψi} are linearly
independent, it may be concluded that there exists a d × d′ matrix A, the
transpose of the matrix of coefficients aij , such that DRA = AD′

R for all
R ∈ G. The converse is also true — if, for a given representation D of
dimension d, there exists a d×d′ matrix A with d′ < d such that DRA = AD′

R

for all R ∈ G, then the representation D is reducible.

[Given the basis {ψi} for D, define the d′ functions φi =
∑d

j=1 Ajiψj .

Acting with R, Rφi =
∑d

j=1 Aji
∑d

k=1(DR)kjψk =
∑d

k=1(DRA)kiψk =
∑d

k=1(AD′
R)kiψk =

∑d
k=1

∑d′

j=1 Akj(D′
R)jiψk =

∑d′

j=1(D
′
R)jiφj. The

d′ < d functions {φi} span an invariant subspace of the carrier
space of D, which is thus reducible. ]

So a representation D is reducible if and only if there exists a matrix A
such that DRA = AD′

R for all R ∈ G and the dimension of D
′ is less than

that of D. This is a criterion for reducibility of a representation.
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