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3. Subgroups and complexes

If a subset H of elements of a group G is itself a group (under the same
rule of multiplication), then it is said to be a subgroup of G, written H < G.
It must contain the identity element of G. Any finite subset H of a group G
is a subgroup if and only if it is closed under multiplication.

[It automatically satisfies associativity, since it belongs to G, and
it has the cancellation property, for the same reason.]

From this it follows that the intersection of any number of subgroups is itself
a subgroup. Both the group G itself and the trivial unit group consisting of
the identity alone are subgroups of G. They are known as improper subgroups.
Any other subgroup is a proper subgroup.

A useful notion is the complex. This is a set of elements of the group,
treated as a collection and with no duplicates. A complex may be multi-
plied by any element of the group, producing another complex — just the
set of products of the chosen element with all the elements of the com-
plex. (To be explicit, if {A1, A2, . . . , Am} is a complex A, then BA =
{BA1, BA2, . . . , BAm} and AB = {A1B,A2B, . . . , AmB}.) Two complexes
may be multiplied together to produce a complex containing all pairwise
products of members of the two complexes, omitting duplicates. (Note that
the order of multiplication, left or right, is generally significant.) From now
on, products of groups or subgroups, or products of elements with groups or
subgroups, should be interpreted as products in the sense of complexes.

In terms of complexes, if H ⊂ G, then H < G ⇐⇒ H2 = H.

[Proof: (1) Suppose H < G. Then, by closure, H2 ⊂ H. But
since H contains the identity E, H2 ⊃ H. So H2 = H. (2)
Suppose H2 = H. Then the product of any two elements of H is
in H, i.e. H is closed under multiplication and so H < G.]

As an example of the utility of the “complex” notation, note that H <
G =⇒ XHX−1 < G for any X ∈ G.

[(XHX−1)2 = XHX−1XHX−1 = X(H)2X−1 = XHX−1.]

In fact, the two subgroups H and XHX−1 are isomorphic to one another
under the natural mapping (A ∈ H)→ XAX−1.

In “complex” notation, the rearrangement theorem states that XG = G
for any X ∈ G.

Suppose H < G, of orders |H| = h and |G| = g. For any A ∈ G, the
complex AH contains h distinct elements, including A itself. It is called a
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left coset of G relative to H. (The complex HA, also containing h distinct
elements, including A, is called a right coset and is generally different from
AH.) Any element of a coset will generate the same coset, i.e. B ∈ AH =⇒
BH = AH.

[B ∈ AH =⇒ B = AH, for some H ∈ H, so BH = AHH = AH,
by the rearrangement theorem.]

Consider an element B ∈ G which does not belong to AH. The left coset
BH is completely distinct from AH.

[If some element of BH is also in AH, then there are elements
H1, H2 ∈ H such that BH1 = AH2 =⇒ B = AH2H

−1
1 =⇒ B ∈

AH, since H2H
−1
1 ∈ H — a contradiction.]

Belonging to the same left coset is an equivalence relation, so the left cosets
partition the group and each of them contains exactly h distinct elements.
Suppose there are n such cosets. This is called the index of the subgroup H
in the group G. The above discussion shows that g = nh, which is known
as Lagrange’s theorem. From this it follows that the order of any subgroup
exactly divides the order of the group. Note that the same discussion could
have been carried through with right cosets, with the same index n.

The set of distinct powers of any element of a group is always closed under
multiplication, so it is a (cyclic) subgroup of the group. Its order is the order
of the element, so it may be concluded that the order of every element of the
group necessarily divides the order of the group. (This is clearly true of the
examples previously described.) Since only the identity element of a group
has order 1, every non-identity element of a group of prime order has the
same order as the group. Such a group has no proper subgroups and must be
cyclic. It may fairly easily be proved that every subgroup of a cyclic group
is cyclic, with one and only one subgroup of order h for every divisor h of g,
and that every group of composite (not prime) order has proper subgroups.

Suppose A ∈ G. The set of elements of G which commute with A is called
the normalizer of A, denoted NA, and is of order nA. Every element of a
group commutes with itself and with the identity, so nA ≥ 2. If the order
of the element is greater than 2, then the element commutes also with its
inverse and nA ≥ 3. (An element of order 2 is its own inverse, since A2 = E.)
Since it is clearly closed under multiplication, NA < G and so nA divides g
and hA = g/nA is the index of NA in G. An element and its inverse have the
same normalizer.
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[X ∈ NA ⇐⇒ XA = AX ⇐⇒ A−1XAA−1 = A−1AXA−1 ⇐⇒
A−1X = XA−1 ⇐⇒ X ∈ NA−1 .]

Consider the coset decomposition of G relative to NA, say {TiNA}, where
the Ti ∈ G, with i = 1, 2, . . . , hA, are representative elements of each of the
cosets. For any X ∈ NA, the conjugate (TiX)A(TiX)−1 = Ti(XAX−1)T−1i =
TiAT

−1
i (since X commutes with A), so all the elements of a given coset pro-

duce the same conjugate element of A. Two distinct cosets cannot generate
the same conjugate element of A

[since TiAT
−1
i = TjAT

−1
j =⇒ T−1j TiA = AT−1j Ti =⇒ T−1j Ti ∈

NA =⇒ T−1j TiNA = NA =⇒ TiNA = TjNA]

so the number of distinct conjugates of A is hA, the number of cosets in the
decomposition relative to NA. The number of elements in the class generated
by A is equal to the index of the normalizer of A and divides the order g of
the group G. It cannot exceed g/2 (g/3 if the order of A is greater than 2).

If hA = 1 for some element A ∈ G, then the class generated by A consists
of the single element A alone. This A commutes with all the elements of
G and is said to be a self-conjugate, or invariant, element. The identity
element E is always invariant. The set of all self-conjugate elements of G is a
subgroup of G (it is evidently closed under multiplication), called the centre
of G.

A subgroupH < G which contains all the conjugates of all its elements is a
self-conjugate subgroup. It satisfies XHX−1 = H, in the sense of complexes,
for every X ∈ G,

[XHiX
−1 ∈ H for every Hi ∈ H and XHiX

−1 = XHjX
−1 =⇒ Hi = Hj]

and is called an invariant or normal subgroup, denoted H C G. A subgroup
H < G is invariant if and only if it contains only complete classes of elements
of G. For an invariant subgroup, the left and right cosets generated by a
given element of G coincide.

[Hi ∈ H, X ∈ G =⇒ XHiX
−1 = Hj ∈ H =⇒ XHi = HjX. In

terms of complexes, XHX−1 = H =⇒ XH = HX.]

In this case, the cosets form a group under multiplication of complexes

[X1HX2H = X1X2H2 = X1X2H (closure), the identity isH itself
and (XH)−1 = X−1H],
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called the quotient group or factor group and denoted G/H.

The centre of G is an invariant subgroup of G. Every subgroup of an
Abelian group is invariant. Given a homomorphism from a group G onto
some other group G ′, the set of elements mapped into the identity element
of G ′ form an invariant subgroup H of G and G ′ is isomorphic to the factor
group G/H.

Suppose G,H are groups. The direct product group G ⊗ H is made up
of ordered pairs of elements (G,H), G ∈ G, H ∈ H, with the multiplication
defined by (G1, H1)(G2, H2) = (G1G2, H1H2). It is of order |G⊗H| = |G|·|H|.
The order of the element (G,H) is the least common multiple of the orders
of G and H. (This implies that the direct product Cm ⊗ Cn of two cyclic
groups is cyclic, namely Cmn, if and only if m and n have no common factor.)

If a group G has two subgroups H1,H2 such that (i) H1 and H2 have no
common element except the identity E, (ii) every element of H1 commutes
with every element of H2 and (iii) G = H1H2, then G is isomorphic to the
direct product H1⊗H2. It is common practice to say G is the direct product
of H1 and H2. It can be shown that if A and B are subgroups of order a and
b respectively, and if their intersection, which is a subgroup of both of them,
has order d, then the complex AB has ab/d distinct elements and is a group
if and only if A and B commute.

Examples

1. The cyclic group C6 made up of An, n = 1, . . . , 6, A6 = E has the (invari-
ant) subgroups {E,A3} and {E,A2, A4}. These are isomorphic to C2 and
C3, respectively. The cosets relative to C2 are {E,A3}, {A,A4}, {A2, A5}
and the quotient group is isomorphic to C3. The cosets relative to C3 are
{E,A2, A4}, {A,A3, A5} and the quotient group is isomorphic to C2. The
group C6 is a direct product C2 ⊗ C3.

2. The group of symmetries of the equilateral triangle is of order 6, with
elements {1, r1, r2,m1,m2,m3}. The classes are {1}, {r1, r2}, {m1,m2,m3}.
The proper subgroups are {1, r1, r2}, {1,m1}, {1,m2}, {1,m3}, of which only
the first (made up entirely of complete classes) is invariant. Relative to the in-
variant subgroup, which is isomorphic to C3, the cosets are {1, r1, r2}, {m1,m2,m3}
and the quotient group is isomorphic to C2. Relative to {1,m1}, for in-
stance, the left cosets are {1,m1}, {r1,m3}, {r2,m2} and the right cosets are
{1,m1}, {r1,m2}, and {r2,m3}, which are different. [Note that the direct
product {1, r1, r2}⊗ {1,m1}, for example, is not equal to the original group,
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although all elements of the group can be formed from products of the el-
ements of the subgroups. Since the elements of the two subgroups do not
all commute, the multiplication table of the direct product group is different
from that of the original group. The direct product group is isomorphic to
C6, as it must be, from example 1.]
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