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13. Representations of Lie algebras

As in the case of finite groups, there is considerable interest and im-
portance in the subject of representations of continuous groups and their
associated algebras. It is again necessary to define the action of the group or
the algebra on an appropriate vector space, the carrier space. This may be a
space of vectors (or states) {φ}, in which case the action is of the form Dφ,
or a space of operators {O}, in which case the action is of the form [D,O],
where D is the operator corresponding to a generator of the algebra.

[It was shown that group elements take the form e
∑

k
γkMk , in

terms of the parameters {γ} and generators {M}, and that op-
erators transform as ROR−1 under the action of the group ele-
ment R. For an infinitesimal transformation,eǫMφ = (1+ ǫM)φ =
φ + ǫMφ, to lowest order in ǫ. The change in φ is given by Mφ.
Similarly, eǫMOe−ǫM = (1 + ǫM)O(1 − ǫM) = O + ǫ[M,O], to
lowest order in ǫ. The change in O is given by [M,O].]

Recall that a representation is a homomorphism from the group or algebra
to a group or algebra of operators on the carrier space of the representation,
which preserves the multiplication or Lie product. For a d-dimensional carrier
space, there will be a matrix representation in terms of d × d matrices. The
representation is irreducible if the carrier space has no subspace invariant
under the action of the elements of the group or the generators of the algebra.
When it is possible to realise the group elements by exponentiation of the
generators of the algebra, then irreducible representations of the group are
obtained by exponentiation of the irreducible representations of the algebra.
It is therefore reasonable to concentrate on representations of Lie algebras.

Within the Cartan-Weyl basis, any semi-simple Lie algebra is spanned
by the generators of the Cartan subalgebra, denoted {Hi}, and pairs of root
vectors {Eα, E−α}, one pair for each positive root α of the algebra. The
different Hi’s commute with one another. (The same notation will be used
for these generators of the algebra and for the operators on the carrier space
which represent them.)

It is thus possible to find in the carrier space vectors which are simulta-
neous eigenvectors of all the Hi. These vectors are called weight vectors and
the set of eigenvalues of the Hi associated with a weight vector is called a
weight. It is clear that the weights, being linear functionals on the Cartan
sub-algebra, belong to the root space of the algebra and can be expressed in
terms of the simple roots, which form a basis for the root space.
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[Although the Cartan subalgebra H is uniquely defined, there is
great flexibility in the choice of the basis {Hi} of H. The nu-
merical values of the components of weights (or of roots) depend
on the specific choice of basis for H, but any quantities defined
through scalar products, such as Dynkin indices, are independent
of the choice of basis. Any convenient set of ℓ linearly indepen-
dent ℓ-tuples can serve as the simple roots of the algebra, since
the basis of H can always be transformed to produce those ℓ-
tuples as eigenvalues of {Hi}. The choice is often made to accord
with a particular physical interpretation. This is referred to as
standardising the Cartan subalgebra.]

Let M be a weight associated with the weight vector φ ∈ V, where V
is the carrier space. [Do not confuse the weights M with the infinitesimal
generators M.] It is defined by the set of eigenvalues {Mi} of the basis {Hi}
of the Cartan subalgebra H. Then Eαφ is a weight vector with weight M +α,
unless Eαφ = 0.

[HiEαφ = [Hi, Eα]φ+EαHiφ = αiEαφ+EαMiφ = (Mi+αi)Eαφ.]

For a carrier space of operators, the weight M is defined by eigenvalues
determined via [Hi,O] = MiO for the weight vector O. Then [Eα,O] is a
weight vector with weight M + α, unless it vanishes.

[[Hi, [Eα,O]] = [[Hi, Eα],O]+[Eα, [Hi,O]] = αi[Eα,O]+Mi[Eα,O],
where the Jacobi identity has been used.]

Repeated applications of Eα will generate an α-string of weights M +kα.
Similarly, repeated applications of E−α will generate further weights M −kα
in the string. For a finite-dimensional representation, such a string must
terminate at both ends, at M +pα and at M −mα. It is easy to see that the
same arguments as were applied to the discussion of strings of roots will lead
to the conclusion that the “magic formula” applies equally well to strings of
weights. It may be concluded that m − p = 2M · α/α · α. It also follows,
again, that if a weight M is expanded in terms of simple roots, the expansion
coefficients will be rational.

Starting from any weight M , additional weights may be produced by
generating α-strings of weights, for any α. Further weights can be produced
by generating α-strings from each of these weights, and so on. For a finite-
dimensional representation, this process must terminate at some stage. The
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resulting set of weight vectors spans a minimal invariant space, which gener-
ates an irreducible representation. This space must contain a highest weight,
one which satisfies EαφM = 0 for all α > 0. In fact, it is clearly sufficient to
restrict the process to the simple roots.

For the state of highest weight, p = 0 in the magic formula, so all the
Dynkin indices of this weight are non-negative. In fact, Dynkin showed that
every weight with non-negative integer Dynkin indices is the highest weight
of an irreducible representation. Both the highest weight and the irrep it
determines will be denoted by Λ.

The Cartan matrix again provides a tool for generating all the weights
in an irrep from the highest weight. Additional weights can be generated by
subtracting simple roots. This is permitted provided the value of the cor-
responding m in the magic formula is positive. At the initial step, starting
with the highest weight, p = 0 for all the simple roots, so m is given by the
Dynkin indices of the highest weight. Those simple roots for which the cor-
responding coefficient is positive can be subtracted from the highest weight
to get new weights. The Dynkin indices of the new weights are obtained by
subtracting the appropriate row of the Cartan matrix from the indices of the
previous weight. At each stage, the value of p for each simple root is known
by inspection of the previous steps, so m is given by the sum of p and the
Dynkin indices of the current weight. The process terminates when m = 0
for every simple root.

Any weight in an irrep labeled by the highest weight Λ can be written
Λ −

∑

i kiα
(i) in terms of the simple roots {α(i)}, where the {ki} are non-

negative integers. The quantity
∑

i ki for a given weight is called the weight
level. The highest weight has level 0.

[As an illustrative example, consider the Λ = (0, 1) representa-

tion of G2, which has the Cartan matrix

(

2 −3
−1 2

)

. The start-

ing weight is Λ = (0, 1), for which p = (0, 0), so that m = (0, 1).
Since m2 > 0, it is possible to generate another weight by sub-
tracting α(2). This gives Λ − α(2), with Dynkin indices (1,−1),
obtained by subtracting the second row of the Cartan matrix
from the Dynkin indices of Λ. Since a weight can be obtained
by adding α(2) but not by adding α(1), this weight has p = (0, 1)
and hence, adding to this its Dynkin indices, m = (1, 0). An-
other weight is now obtained by subtracting α(1) (since m1 > 0)
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to get Λ − α(1) − α(2), with Dynkin indices (−1, 2). This weight
has p = (1, 0), so m = (0, 2) and α(2) can again be subtracted,
producing Λ − α(1) − 2α(2) with Dynkin indices (0, 0). Here
p = (0, 1) =⇒ m = (0, 1), so the next weight is Λ − α(1) − 3α(2),
with Dynkin indices (1,−2). Now p = (0, 2) =⇒ m = (1, 0)
and the next weight is Λ − 2α(1) − 3α(2) with Dynkin indices
(−1, 1). At this stage, p = (1, 0) =⇒ m = (0, 1), so the next
weight is Λ − 2α(1) − 4α(2), Dynkin indices (0,−1). Finally,
p = (0, 1) =⇒ m = (0, 0) and the process terminates. This
irrep has seven distinct weights, at levels 0,1,. . . ,6.]

The process may again be structured as outlined below.
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A =

(

2 −3
−1 2

)

level 0 Λ
∆ = (0, 1)
p = (0, 0)
m = (0, 1)

HHHj(2)
level 1 Λ − α(2)

∆ = (1,−1)
p = (0, 1)
m = (1, 0)

����(1)
level 2 Λ − α(1) − α(2)

∆ = (−1, 2)
p = (1, 0)
m = (0, 2)

HHHj(2)
level 3 Λ − α(1) − 2α(2)

∆ = (0, 0)
p = (0, 1)
m = (0, 1)

HHHj(2)
level 4 Λ − α(1) − 3α(2)

∆ = (1,−2)
p = (0, 2)
m = (1, 0)

����(1)
level 5 Λ − 2α(1) − 3α(2)

∆ = (−1, 1)
p = (1, 0)
m = (0, 1)

HHHj(2)
level 6 Λ − 2α(1) − 4α(2)

∆ = (0,−1)
p = (0, 1)
m = (0, 0)

The use of the Cartan matrix and the “magic formula” to determine the
weights of an irrep by stepping down from the highest weight is essentially the
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inverse of the use of the same ingredients to establish the roots of an algebra
by building up from the simple roots. In fact, the roots of the algebra are
the weights of the adjoint representation. The last positive root found by the
building-up process is the highest weight of the adjoint representation and
its Dynkin indices label the adjoint representation.

However, if the process is reversed and the weights of the adjoint repre-
sentation are generated from the highest weight, all the roots are produced
— positive, negative and zero. It will be found that the zero root is produced
only once, regardless of the rank of the algebra, i.e. the degeneracy of the
zero root. This is a symptom of a general problem with the “step-down”
method for finding the weights. While it does produce all the weights in an
irrep, it gives no information about their degeneracy. Though the non-zero
weights in the adjoint representation are non-degenerate, this is not generally
true of the weights in other irreps.

Each weight belongs to a weight space whose dimension is the degeneracy
of the weight and must be separately determined. Two useful rules are that
the highest weight in an irrep is always non-degenerate, and that any weight
which can be generated in only one way by the “step-down” procedure (i.e.
there is only one path from the highest weight to the given weight) is also
non-degenerate.

A helpful property of the irreps is that they are “spindle-shaped” —

B
B

B
B

BB

�
�
�
�
��

�
�
�
�
��

B
B

B
B
BB

middle of irrep

— when built up step by step from the highest weight down, they cannot
shrink in width until the middle of the irrep is reached (i.e. each level must
have at least as many weights, including degeneracy, as the previous level)
and they must be symmetric about the middle of the irrep, in terms of number
of weights (including degeneracy) at each level. This can be a check on the
determination of degeneracies.
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Any weight can be expressed in terms of the simple roots, which form a
basis for the root space in which the weights reside. For a given weight M , its
expansion in terms of simple roots can be written M =

∑

i aiα
(i), where the

coefficients {ai} are to be determined. The Dynkin indices of the weight are
∆M

i = 2M · α(i)/α(i) · α(i) =
∑

j ajAji, from which ai =
∑

j ∆M
j (A−1)ji. The

inverse of the Cartan matrix may be used to obtain the expression for any
weight in terms of simple roots, if desired. Since M =

∑

ij ∆M
i (A−1)ijα

(j),
scalar products can be evaluated directly in terms of Dynkin indices, with
the aid of the inverse A−1 of the Cartan matrix.

[M · N =
∑

ijkl ∆
M
i (A−1)ij∆

N
k (A−1)klα

(j) · α(l). But α(j) · α(l) =
Aljα

(j) · α(j)/2, so M · N =
∑

ij ∆M
i (A−1)ij∆

N
j α(j) · α(j)/2.]

It was shown that each Lie algebra has a Casimir operator which com-
mutes with all the generators of the algebra. Though the definition of this
operator was purely formal in the context of the algebra (since it involves the
simple product of two generators, which is not generally defined), it becomes
well-defined in the context of representations, where the simple product of
two operators or of two matrices is clearly defined. The resulting operator or
matrix commutes with all the representatives of the generators and hence, by
Schur’s lemma, is a multiple of the unit matrix in any irrep. Its eigenvalue
characterizes the irrep and can be expressed directly in terms of the highest
weight.

The Casimir operator is given by C =
∑d

ρ,σ=1 gρσXρXσ, where d is the
dimension of the algebra and Xρ are its generators. In the Cartan-Weyl ba-
sis, this becomes C =

∑ℓ
i,j=1 gijHiHj +

∑

α>0(EαE−α + E−αEα)/gα,−α. But

[Eα, E−α] = gα,−αHα, so C =
∑ℓ

i,j=1 gijHiHj+
∑

α>0 Hα+2
∑

α>0 E−αEα/gα,−α.
When acting on the state of highest weight Λ, each Hi produces a factor Λi,
while each Eα>0 produces zero, by the definition of highest weight. Recalling
that Hα =

∑

i,j gijαiHj, it is seen that the eigenvalue of the Casimir operator
C for the state of highest weight Λ, and hence for every state in the irrep, is
c = (Λ + 2δ) ·Λ, where the quantity δ is half the sum of the positive roots of
the algebra, δ =

∑

α>0 α/2.

The eigenvalue of the Casimir operator is easily evaluated when the Car-
tan matrix and the Dynkin indices of the highest weight Λ are known, pro-
vided the Dynkin indices of the quantity δ =

∑

α>0 α are also known. But
the Dynkin indices of δ are (1, 1, . . . , 1) for every semi-simple Lie algebra.
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[The Weyl reflection Sα, where α is a root, maps roots into roots.
For any root β, it is defined by Sαβ = β − 2(β · α)α/(α · α).
By inspection, S−α = Sα and Sαα = −α. Also, S2

αβ = Sαβ −
2(β · α)Sαα/(α · α) = β =⇒ S2

α = 1. It can be seen easily by
direct evaluation that Sαβ · Sαγ = β · γ, i.e. the Weyl reflection
is unitary.

For any positive root α > 0 and any simple root α(i), the root
Sα(i)α > 0, for α 6= α(i).

[α =
∑

i kiα
(i), where the {ki} are non-negative inte-

gers. Then Sα(i)α =
∑

j kj(α
(j) − 2(α(j) · α(i))α(i)/(α(i) ·

α(i))) = α(i)(ki−
∑

j 2(α(j)·α(i))/(α(i)·α(i))kj)+
∑

j 6=i kjα
(j).

But, for α 6= α(i), there must be some j 6= i for which
kj 6= 0, i.e. kj > 0. However, the expansion coefficients
of a root in terms of simple roots are either all positive,
for a positive root, or all negative, for a negative root.
Therefore, Sα(i)α is a positive root.]

The images under Sα(i) of different positive roots α are different.

[Since S2
α = 1, it follows that Sαβ = Sαγ =⇒ β = γ.]

So Sα(i)δ = −α(i)/2 +
∑

0<α6=α(i) α/2 = −α(i)/2 + δ − α(i)/2 =

δ−α(i). Finally, δ ·α(i) = Sα(i)δ ·Sα(i)α(i) = (δ−α(i)) · (−α(i)) =⇒
2δ · α(i) = α(i) · α(i) =⇒ ∆δ

i = 1 for all i.]

In terms of the Dynkin indices which label the irrep Λ, the eigenvalue of the
Casimir operator is thus cΛ = (Λ+2δ) ·Λ =

∑

ij(∆
Λ
i +2)(A−1)ij∆

Λ
j (αj ·αj)/2.

Knowledge of the eigenvalue of the Casimir operator permits the deriva-
tion of a closed formula for the dimension dM of the weight space associated
with any weight M , i.e. for the degeneracy of the weight, in terms of the
dimensions of weight spaces of higher weight. This Freudenthal recursion

formula reads dM =
∑

α>0

∑∞
k=1 2dM+kα(M +kα) ·α/(Λ+M +2δ) · (Λ−M),

where the inner sum is over all weights which can be reached from the weight
M by adding multiples of the root α. In order to apply this formula, it is
clearly necessary to know all the weights higher than M (which are auto-
matically supplied by the “step-down” procedure) and all the positive roots,
both in terms of simple roots.

Using these results, Weyl derived the Weyl dimension formula for the
dimension dΛ of an irrep Λ of a semi-simple Lie algebra, dΛ =

∏

α>0(1 + α ·

Introductory Algebra for Physicists Michael W. Kirson



13. Representations of Lie algebras 9

Λ/α · δ). If the positive root α =
∑

i k
(α)
i α(i), where the k

(α)
i are non-negative

integers and the α(i) are the simple roots, and if the Dynkin indices ∆Λ
i of

the irrep are known, then α · Λ =
∑

i k
(α)
i ∆Λ

i (α(i) · α(i))/2 and the formula

becomes dΛ =
∏

α>0(1 +
∑

i k
(α)
i ∆Λ

i α(i) · α(i)/
∑

i k
(α)
i α(i) · α(i)).

Examples

1. Consider the Lie algebra A1, corresponding to the matrix group SU(2).
This is a rank-1 algebra, so the Cartan matrix is a single number, A = 2, as
is its inverse, A

−1 = 1/2.

Suppose an irrep is specified by the single Dynkin coefficient λ. In terms
of the single simple root α, the highest weight is λα/2. Since p = 0 for
the highest weight, m = p + ∆ = λ > 0, in general, so a lower weight
can be obtained by subtracting α. This produces the weight (λ/2−1)α with
Dynkin coefficient λ−2 (obtained by subtracting A from the previous Dynkin
coefficient). For this weight, p = 1, so m = λ − 1 > 0, for large enough λ.

Again subtracting α produces the weight (λ/2 − 2)α, with Dynkin co-
efficient λ − 4. The process proceeds through the weights (λ/2 − k)α with
Dynkin indices λ − 2k, for which p = k, m = λ − k, and terminates at the
lowest weight, −λα/2, with Dynkin coefficient −λ, for which p = λ, m = 0.

All the weights are non-degenerate, since each can be reached from the
highest weight by only one path, and there are clearly λ + 1 of them, which
is the dimension of the irrep. If the representation is standardised by setting
α = 1 (i.e. the Cartan subalgebra is scaled so that α = 1), then the λ + 1
weights range from λ/2 to −λ/2 in unit steps. The usual notation is obtained
by writing λ = 2j.

2. Consider the Lie algebra A2, corresponding to the matrix group SU(3).
This rank-2 algebra has two simple roots, denoted α(1), α(2), and a third
positive root, α(1) + α(2). The simple roots are of equal length.

Let the irreps be denoted (λ, µ), the Dynkin indices of the corresponding
highest weight. From the Weyl dimension formula, the corresponding dimen-
sion is dλ,µ = (1 + λ)(1 + µ)(1 + (λ + µ)/2) = (λ + 1)(µ + 1)(λ + µ + 2)/2.

The Cartan matrix is

(

2 −1
−1 2

)

, its inverse 1
3

(

2 1
1 2

)

.

The irrep (1, 0), of dimension 3, has the highest weight (2α(1) + α(2))/3,
for which p = (0, 0) and m = (1, 0). Subtracting α(1) produces the weight
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(−α(1) + α(2))/3 with Dynkin indices (−1, 1), for which p = (1, 0) and m =
(0, 1). Subtracting α(2) produces the weight −(α(1) + 2α(2))/3 with Dynkin
indices (0,−1), for which p = (0, 1) and m = (0, 0), so the process terminates.

One well-known application of SU(3) is to light-flavour quarks, in which
the quarks u, d, s form a fundamental triplet. They have the quantum num-
bers isospin Tz and hypercharge Y , with the values u [1/2, 1/3], d [−1/2, 1/3]
and s [0,−2/3], where isospin refers to an SU(2) subgroup. If isospin is identi-
fied with the SU(2) associated with the simple root α(1), then the weight (1, 0)
is identified with u and the weight (−1, 1) with d. Thus, (2α(1) + α(2))/3 =
[1/2, 1/3], (−α(1) + α(2))/3 = [−1/2, 1/3] =⇒ α(1) = [1, 0], α(2) = [−1/2, 1],
which standardises the Cartan subalgebra.

The weights of the adjoint representation (1, 1), which are also the roots
of the algebra, have Dynkin indices (obtained by the “step-down” procedure)
(1, 1), (−1, 2), (2,−1), (0, 0)(twice), (−2, 1), (1,−2), (−1,−1). Expressed
in terms of the standardised simple roots, these become the well-known oc-
tuplet [1/2, 1], [−1/2, 1], [1, 0], [0, 0, ]2, [−1, 0], [1/2,−1], [−1/2,−1].

x

x

x

x

x xx x-

6Y

Tz

1

−1

1
1
2

−1
2−1

The anti-quarks belong to the conjugate triplet (0, 1).
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