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1. Groups — Definitions

A group is a set S of elements between which there is defined a binary
operation, usually called multiplication. For the moment, the operation will
be denoted × and the previous statement means that, if A and B are elements
of the set, then A×B is defined. The first requirement for the set to constitute
a group is that the result of the binary operation is itself a member of the
set, A × B ∈ S, i.e. the set is closed under multiplication.

The next requirement is that the multiplication operation is associative,
which means that (A × B) × C = A × (B × C). In other words, the product
of a number of elements of the set, A × B × C × D × . . ., is well defined.
In the interests of economy, the operator × will generally be omitted, so
multiplication of elements is written AB or ABCD, etc. An immediate
consequence of associativity is that powers of elements of the group are well
defined — An = A × A × · · · × A

︸ ︷︷ ︸

n

— and satisfy the usual rule of powers,

AmAn = Am+n.

The third requirement of the set S is that it must contain an identity

element, often denoted E or 1, with the property that AE = A = EA for
every element A ∈ S. The identity is unique, since if E and F are both
identities, then E = EF = F .

Finally, it is required that, for every element A ∈ S, the set S must
contain an element B such that AB = E = BA. The element B is called
the inverse of A and is denoted A−1. It is unique, since if B and C are
both inverses of A, then B = BE = BAC = EC = C. (Note the central
role played by associativity of multiplication.) Powers of A−1 are denoted
(A−1)n = A−n and satisfy AnA−n = E = A−nAn and AnA−m = An−m. It also
follows that A0 = E for any A ∈ S. Note that (AB)−1 = B−1A−1 and that
the inverse of A−1 is A, i.e. (A−1)−1 = A.

To summarize, a group G is a set of elements with a binary op-
eration of multiplication which satisfies the following conditions:

1. The set is closed under multiplication.

2. The multiplication is associative.

3. The set includes an identity element.

4. For every element in the set there is an inverse element in
the set.
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This basic definition can be modified in various ways. For example, it is
sufficient to require a left (or right) identity and a left (or right) inverse —
it can then be proved that the identity and inverse are two-sided.

Suppose G is a group and let A be any element of the group. Consider
the set of elements GA = {AB for all B ∈ G}. They are all different, since
the existence of the inverse A−1 means that AB = AC =⇒ B = C. Since G
is closed under multiplication, every element of GA belongs to G. But an
arbitrary element C ∈ G can be written C = AA−1C and since A−1C ∈ G it
follows that every element of G belongs to GA. So the two sets G and GA are in
fact the same set — GA is just the group G, generally in some different order.
This result is dignified with the title of the rearrangement theorem. It would
clearly hold equally well if GA were defined using right multiplication rather
than left multiplication by the element A, i.e. GA = {BA for all B ∈ G}.

The rearrangement theorem: The set of elements obtained
by multiplying every element of a group G by a fixed element of
G is just the set of elements of G, generally in a different order.

From the existence of inverses and the identity, it follows that a group has
the cancellation property: XA = XB or AX = BX implies A = B, for any
elements A, B, X ∈ G. (Just pre- or post-multiply by X−1, as appropriate.
Again, note the essential role of associativity.) For a group G with a finite
number of elements, this property implies that G and GA in the rearrangement
theorem have the same number of elements.

If the set G has a finite number of elements and a binary operation of
multiplication between them, then if (i) G is closed under multiplication, (ii)
the multiplication is associative and (iii) the cancellation property holds, G
is a group.

[Proof: Choose A ∈ G and form the set {AB, for all B ∈ G}.
If AB = AC, then by the cancellation property B = C, so this
set has distinct elements, all of which belong to G, by closure,
and it has as many elements as G. It is thus just G, in some
order, i.e. the cancellation property is sufficient to establish the
rearrangement theorem for a finite G. It follows that one of the
elements of this set is A itself, i.e. there is an element of G, to be
denoted EA, such that AEA = A. This element is a right iden-
tity for A. But then AEAA = AA and the cancellation property
implies EAA = A, so EA is also a left identity for A. Since A
was chosen at random, it follows that every element of G has a
(two-sided) identity. Given two elements A, B ∈ G, with their
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associated identities, AEAB = AB and the cancellation property
implies EAB = B. But B = EBB, so EAB = EBB and the can-
cellation property implies EA = EB. Hence, G contains a unique
identity E. A similar argument, based on the fact that the set
{AB, for all B ∈ G} must include the identity element E ∈ G,
shows that every element of G has a unique inverse in G. So,
finally, G is a group.]

As a rule, it is fairly straightforward to establish closure and the existence
of the identity and inverse. However, there is no general way of confirming
the associativity of the multiplication operation. In principle, it could be
necessary to check every triplet ABC of group elements to confirm that,
in fact, A(BC) = (AB)C in every case. For large groups, this can be an
immense task. (Of course, even a single triplet failing this test is enough
to establish that the set and multiplication rule at issue do not constitute
a group.) Fortunately, there are many cases in which associativity can be
demonstrated quite directly. One very useful result is that mappings of a set
of objects to itself are associative, where the multiplication rule is consecutive
action of the mappings.

[Let A,B and C be mappings of a set {x} of elements, A : x → xA

for instance, with multiplication defined as consecutive action
of mappings, AB : x → (xB)A. (Note: the order of consecu-
tive actions is always set by reading from right to left.) Then
A(BC) : x → ((xC)B)A and (AB)C : x → ((xC)B)A). ]

If it is possible to interpret the elements of a group as mappings of some set
to itself, while preserving the multiplication rule, it follows immediately that
the multiplication is associative.

The structure of a finite group is essentially determined by its multipli-

cation table, a square array in which the rows and columns are labelled by
the elements of the group and the product AB (an element of the group, by
closure) is entered in the A row and B column. (It is important to stick to a
fixed convention — entering the element AB in the A column and B row will
very often produce a different multiplication table.)It is conventional to place
the identity E first in the list of elements and to use the same ordering of the
group elements in labelling the rows and the columns. Since EA = A = AE
for every element A of the group, the first row and first column of the multi-
plication table simply repeat the list of elements. It is therefore unnecessary
to label the rows and columns explicitly.

Consider the X row of the multiplication table. If the elements of the
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group are {E, A, B, . . .}, then this row is {X, XA, XB, . . .}. By the rear-
rangement theorem, each row is therefore a permutation of the elements of
the group. The same argument shows that each column of the table is a
permutation of the elements of the group. This is a significant constraint
on the form of the multiplication table. It implies that every element of
the group appears exactly once in each row and column. In addition, since
AB = E =⇒ A = B−1 =⇒ B = A−1 =⇒ BA = E, the identity element can
appear only on or symmetrically about the main diagonal of the table. To be
acceptable as the multiplication table of a group, such an array must satisfy
both of these constraints and, in addition, be compatible with associativity.

Note that multiplication is required to be associative, but need not be
commutative. In general, AB 6= BA for two elements of a group. If an
element of the group appears symmetrically about the main diagonal of the
group multiplication table, the elements labeling its row and column com-
mute with one another. A group for which all pairs of elements commute is
said to be commutative, or Abelian, and its multiplication table is symmetric
about the main diagonal.

The multiplication table defines the group. It is obvious that changing the
standard order of the elements in the first row and column of the table will
change the appearance of the table without changing the group. Reshuffling
the elements would restore the table to its original form. However, two
apparently different groups may have the same multiplication table when
their elements are appropriately ordered, differing from one another only in
the labels on the elements. In some sense, they are the same group. Such
groups are actually different realisations of the same abstract group structure.
Two groups, having the same number of elements, which can be brought to
have the same multiplication table by a suitable correspondence between
their elements are said to be isomorphic to one another. More formally, an
isomorphism of two groups is a one-to-one onto mapping between the groups
which preserves the multiplication (i.e. the image of the product of two
elements is the product of the images of the elements).

There is also a less restrictive relation between groups, called a homo-

morphism. This is a mapping from one group to another which preserves the
multiplication, but need not be one to one. Two homomorphic groups need
not have the same number of elements. In fact, all groups are homomorphic
to the trivial single-element group consisting only of the identity (called the
unit group). Because it preserves multiplication, any homomorphism maps
the identity element to the identity element and inverses to inverses.
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[Let h be a homomorphism of the group G to the group G′.
Write h(R) = R′ for R ∈ G, where R′ ∈ G′. Then h(ER) =
h(E)h(R) =⇒ R′ = E ′R′ for any R ∈ G, so E ′ is the identity
in G′. Similarly, h(R)h(R−1) = h(E) =⇒ R′(R−1)′ = E ′, so
(R−1)′ = (R′)−1.]

Examples of finite groups

1. Addition of integers modulo 6 defines a group of six elements, the num-
bers {0, 1, 2, 3, 4, 5}, where the “multiplication” is addition (mod 6) and the
identity is 0. The multiplication table is

0 1 2 3 4 5
1 2 3 4 5 0
2 3 4 5 0 1
3 4 5 0 1 2
4 5 0 1 2 3
5 0 1 2 3 4

and is symmetric, since addition is commutative. (Note that the elements
of the group can be interpreted as mappings of a set of six points arranged
in a circle, with element n representing a clockwise shift by n dots. The
multiplication is thus associative.)

2. The 1

6
roots of unity form a group under multiplication. Denoting

ω = e2πi/6, the six elements of the group are {1, ω, ω2, ω3, ω4, ω5} and the
identity is 1. The multiplication table is

1 ω ω2 ω3 ω4 ω5

ω ω2 ω3 ω4 ω5 1
ω2 ω3 ω4 ω5 1 ω
ω3 ω4 ω5 1 ω ω2

ω4 ω5 1 ω ω2 ω3

ω5 1 ω ω2 ω3 ω4

and is again symmetric, since complex multiplication is commutative (and
also associative). (It would also be possible to interpret the elements of the
group as mappings of a set of six unit vectors in the plane at angles of 2π/n to
the x axis, with element ωn representing a clockwise rotation through 360◦/n
about the origin.)

3. The symmetries of an equilateral triangle form a group, where mul-
tiplication is the consecutive application of the transformations leaving the
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triangle invariant. Suppose the triangle has its base along the x axis and its
vertex on the positive y axis and that its vertices are labelled A, B, C from
the top counterclockwise.










J
J

JJ

A

B C

The triangle will remain invariant, though the labelling of the vertices will
change, under the following operations:

• (i) no transformation at all, the identity, denoted 1 [1 : ABC → ABC];

• (ii) a counterclockwise rotation through 120◦ about an axis perpendic-
ular to the x − y plane through the centre of gravity of the triangle,
denoted r1 [r1 : ABC → CAB];

• (iii) a counterclockwise rotation through 240◦ about the same axis,
denoted r2 [r2 : ABC → BCA];

• (iv) - (vi) rotations through 180◦ about axes through the vertices of
the triangle and perpendicular to the opposite sides, denoted m1, m2

and m3 [m1 : ABC → ACB, m2 : ABC → CBA, m3 : ABC → BAC].

The group has six elements and its multiplication table is

1 r1 r2 m1 m2 m3

r1 r2 1 m3 m1 m2

r2 1 r1 m2 m3 m1

m1 m2 m3 1 r1 r2

m2 m3 m1 r2 1 r1

m3 m1 m2 r1 r2 1

which is not symmetric — this group is not Abelian. (Note again the con-
vention that the product of transformations T1T2 implies that T2 acts first
and is followed by T1. The order of action of a product of transformations is
from right to left.) The six symmetry operations map the set of six triplets
ABC, ACB, BAC, BCA, CAB, CBA into itself and reflect the multiplica-
tion table, so the multiplication is associative.

4. The set of permutations of three objects form a group, where multipli-
cation is again the consecutive action of two permutations. The six elements
of the group are

• (i) the identity permutation 1 [1 : uvw → uvw],
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• (ii) the three transpositions Pij, [P12 : uvw → vuw, P13 : uvw → wvu,
P23 : uvw → uwv],

• (iii) the cyclic permutation C [C : uvw → wuv] and

• (iv) the anticyclic permutation A [A : uvw → vwu],

and its multiplication table is

1 P12 P13 P23 C A
P12 1 A C P23 P13

P13 C 1 A P12 P23

P23 A C 1 P13 P12

C P13 P23 P12 A 1
A P23 P12 P13 1 C

which is again not symmetric — this group, too, is non-Abelian. The ele-
ments of the group are mappings to itself of the set of six ordered triplets
uvw, uwv, vuw, vwu, wuv, wvu, so the multiplication is associative.

The above are examples of four different groups of six elements each. They
are certainly not all realisations of the same abstract group, since two of them
are Abelian and two are non-Abelian, so the multiplication tables cannot be
made to coincide. However, the first two are isomorphic to one another and
so are the last two. The mapping n ⇀↽ ωn maps the first and second groups
into each other while preserving the multiplication table, and the same is
true of the mapping 1 ⇀↽ 1, r1

⇀↽ C, r2
⇀↽ A, m1

⇀↽ P23, m2
⇀↽ P13, m3

⇀↽ P12

of the third and fourth groups into each other. So there are, in fact, only
two different groups of six elements among the four examples.
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