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Young diagrams

The conjugacy classes of Sn, the symmetric group on n elements, are
determined by their cycle structure. All elements of a class have the same
cycle structure; all elements with the same cycle structure belong to the same
class. The cycle structure is defined as the set of non-negative integers {νr},
where r = 1, 2, . . . , n and νr is the number of r-cycles in the unique resolution
of a permutation into non-overlapping cycles. Note that

∑
r rνr = n.

An alternative characterisation of the classes is in terms of the non-
negative integers {µr}, where µs =

∑n
r=s νr and it is evident that

∑
r µr = n

and µ1 ≥ µ2 ≥ . . . ≥ µn ≥ 0, i.e. the set {µr} is a partition of n. The classes
can be labeled by the partitions of n; there are as many classes as partitions
of n; and the cycle structure can be deduced from νr = µr − µr+1 (with
µn+1 = 0).

A useful and widely adopted pictorial notation for partitions is provided
by Young diagrams. The Young diagram corresponding to the partition {µr}
of n consists of left-justified rows of µr boxes stacked in decreasing order of
length. This definition is best understood by way of a concrete example.

The partitions of n = 5, with their associated Young diagrams, are

partition short form Young diagram cycle structure gk

5+0+0+0+0 5 (5,0,0,0,0) 1

4+1+0+0+0 41 (3,1,0,0,0) 10

3+2+0+0+0 32 (1,2,0,0,0) 15

3+1+1+0+0 312 (2,0,1,0,0) 20

2+2+1+0+0 221 (0,1,1,0,0) 20

2+1+1+1+0 213 (1,0,0,1,0) 30

1+1+1+1+1 15 (0,0,0,0,1) 24

and the cycle structure is given by the number of boxes at each level pro-
truding to the right of the next lower level. These Young diagrams provide a
handy label for the conjugacy classes, but no more. Recall that the number
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of elements in a class of cycle structure {νr} is n!/
∏
r r

νrνr!, listed in the
table as gk.

Irreps of Sn
Young diagrams play a more significant role in defining the irreps of the
symmetric group Sn. Once again, there is a Young diagram for every partition
of n, but now there is an irrep for every Young diagram. [The Young diagrams
defining the irreps have no connection with the Young diagrams labeling the
classes, except that there are equal numbers of each, as there must be. The
same set of Young diagrams serves both to label the classes and to define the
irreps.]

Given a Young diagram, one produces Young tableaux by filling the n
boxes of the diagram with the numbers 1 through n, in such a way that
the numbers always increase from left to right along any row and from top
to bottom down any column. An example of a Young tableau for the 32

irrep of S5 is 3 5
1 2 4

. The dimension of the irrep is the number of different
Young tableaux that can be produced in this way. It is given by the so-called
hook-length formula, as follows.

In a Young diagram (with empty boxes), place in the centre of each box

in turn a “hook” ?
-

, extending to the right past the end of the row and down
past the end of the column in which the box is placed. The hook length of
the box is the number of boxes lying along the hook, in both directions. (e.g.
In the Young tableau in the previous paragraph, the middle box in the top
row has hook length 3 and the right-hand box in the second row has hook
length 1.) In each box, enter its hook length. The number of distinct Young
tableaux, and hence the dimension of the irrep, is n! divided by the product
of the n hook lengths.

[The Young diagram of the 32 irrep of S5, with the hook lengths

of the boxes entered, is 2 1
4 3 1

. The dimension of the irrep is
5!/4.3.1.2.1=5.]

The irreps of Sn define the symmetry of vectors under permutation.
Roughly speaking, the vectors are symmetric under permutation of the la-
bels in each row of a Young tableau, antisymmetric under permutation of
the labels in each column of the tableau. The irrep n (one row of n boxes)
is totally symmetric in the n labels, while the irrep 1n (one column of n

Introductory Algebra for Physicists Michael W. Kirson



Young diagrams 3

boxes) is totally antisymmetric in the n labels. All other irreps have mixed
symmetry.

To each tableau there is a symmetrizer which projects out of any vector
on which it acts the part belonging to that tableau of the given irrep. If
the vector has no part belonging to the relevant tableau, the projector gives
zero. The projector is defined by identifying, among the n! permutations P ,
those which leave the labels in their rows (denoted R) and those which leave
the labels in their columns (denoted C). Permutations which move labels
between rows or between columns are omitted from this classification. The
elements of the group algebra ρ =

∑
R and κ =

∑
ζ(C)C are formed, where

ζ(P ) is the alternating character of the permutation P , and their product
κρ is the Young symmetrizer of the tableau. [Note that it is also possible to
define the symmetrizer as ρκ — the result is different but equally acceptable.
But whichever convention is chosen, it must be applied consistently.]

Recall the simple case of S3, with the six permutations 1, (12), (13), (23),
(123), (132). The irreps are labeled 3, 21, 13 and all the Young tableaux are

(i) : 1 2 3 , (ii) : 3
1 2

, (iii) : 2
1 3

and (iv) : 3
2
1

. Of the six permutations,
all leave the labels of tableaux (i) and (iv) in their rows or columns, but only
some of them qualify for inclusion in the symmetrizers of tableaux (ii) and
(iii). For tableau (ii), the set of R’s is {1, (12)} and the set of C’s is {1, (13)},
so the Young symmetrizer of (ii) is [1−(13)][1+(12)] = 1+(12)−(13)−(123).
For tableau (iii), the set of R’s is {1, (13)} and the set of C’s is {1, (12)}, so
the Young symmetrizer of (iii) is [1−(12)][1+(13)] = 1−(12)+(13)−(132).
The Young symmetrizers of tableaux (i) and (iv) are 1± (12)± (13)± (23) +
(123) + (132) respectively (upper signs for (i), lower signs for (iv)).

[Note in passing that the hook length formula gives dimensions
3!/3.2.1=1 for irreps 3 and 13 and 3!/1.3.1=2 for irrep 21, as
found previously. The formula always produces d = 1 for the
irreps n and 1n of Sn and d = n− 1 for the irrep n− 1, 1.]

Irreps of su(n)

It is of interest that Young diagrams can also be used to label the irreps of
the algebras su(n). The relevant rules are:

• The Young diagram of an irrep of su(n) has at most n rows. There is
no limit on the total number of boxes.
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• The Dynkin indices of an irrep labeled by a given Young diagram are,
row by row, the number of blocks by which a row exceeds the length
of the following row. This number may be zero.

• A column of n boxes may be omitted from the Young diagram of an
irrep of su(n). (The previous rule implies that the Young diagram
consisting of a single column of n boxes labels the irrep with Dynkin
indices (0,0,. . . ,0), i.e. the singlet irrep.)

• The irrep of su(n) labeled by a given Young diagram has the symme-
try of the irrep of Sr with the same Young diagram, where r is the
number of boxes in the diagram. [Note the implication that the irrep

(r,0,0,. . . ,0), corresponding to the Young diagram . . .
. . .

with a
single row of r boxes, is totally symmetric. This is relevant to the
identification of su(3) irreps for the isotropic harmonic oscillator.]

The following is an example of a Young diagram labeling the irrep (2,0,2,1)
of su(5).

=

,

where the right hand diagram is obtained by removing the column of 5 boxes
from the left hand diagram.

Products of su(n) irreps

Young diagrams may also be used to reduce the product of su(n) irreps.
Each of the two irreps being multiplied together is represented by its Young
diagram. The squares of the smaller of the diagrams are filled with labels,
the first row being labeled a, the second row b, the third row c, and so on.
The labeled squares are then attached, one by one, to the larger diagram,
forming new, partly labeled, Young diagrams. (As always, the lengths of the
rows of any Young diagram cannot exceed the length of any higher row.)
The following restrictions apply at every stage:

• No two squares with the same label may occur in the same column.

• The total number of labels a, counting by columns from right to left,
cannot be less than the number of labels b, which itself cannot be less
than the number of labels c, and so on. (The “row counting rule”.)
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• The total number of labels a, counting by rows from top to bottom,
cannot be less than the number of labels b, which itself cannot be less
than the number of labels c, and so on. (The “column counting rule”.)

• The same Young diagram may be produced more than once. If the
labeling is the same in both diagrams, only one is retained. If the
labeling is different, both are retained.

• For application to a specific su(n), diagrams with more than n rows are
discarded and columns of n squares are removed from the diagrams.

A small example follows, for the product (3, 1)⊗ (1, 1) of su(3) irreps.

⊗
a a
b

Stage I
a

a a

Stage II.1
a a a

a

a

a

Stage II.2

a
a��
��
�

[duplicate] aa a
a

Stage II.3
a

a

�
�
�
�
�

[duplicate]
a
a

�
�
�
��

[duplicate]
a
a
�
�
�
�
�

[2 a’s in column]

Stage III.1.i
a a

b b

a a

Stage III.1.ii
a

a b

a
a

b

Stage III.1.iii

a

a
b

a

a
b�
�
�
�
�

[4 rows]

Stage III.2.i
aa

b
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Stage III.2.ii a
a
b

a
a

b�
�
�
��

[4 rows]
Some comments: (1) Young diagrams with more than 3 rows have been

discarded, specifically for su(3). (2) Columns of 3 squares have been removed
from the final set of Young diagrams, again specifically for su(3). (3) At stage
III, a number of Young diagrams have been omitted because they violate
the “counting rules”. (4) The same Young diagram occurs in stages III.1.ii
and III.1.iii, but the labeling is different, so both diagrams are retained.
Duplicates with the same labeling have been discarded along the way.

The final reduction is

(3, 1)⊗ (1, 1) = (4, 2)⊕ (5, 0)⊕ (2, 3)⊕ (3, 1)⊕ (3, 1)⊕ (1, 2)⊕ (2, 0).

The relevant dimensions are 24×8 = 60+21+42+24+24+15+6, confirming
the reduction.

[Note that the highest weight rule produces (4,2); Dynkin’s second highest
weight theorem produces both (2,3) and (5,0), since the extended Dynkin
diagram has two chains; and the adjoint rule produces one (3,1). There then
remain three irreps, which are found by the Young diagram rules.]
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