Isotropic harmonic oscillator

The hamiltonian of the isotropic harmonic oscillator is

$$H = -\frac{\hbar^2}{2m} \vec{\nabla}^2 + \frac{1}{2} m \omega^2 \vec{r}^2$$
 (1)

$$= \sum_{\rho=x,y,z} \left[-\frac{\hbar^2}{2m} \frac{d^2}{d\rho^2} + \frac{1}{2} m^2 \omega^2 \rho^2 \right], \tag{2}$$

a sum of three one-dimensional oscillators with equal masses m and angular frequencies ω . The hamiltonian of the one-dimensional oscillator can be rewritten in terms of dimensionless quantities as

$$H_x = \left[-\frac{1}{2} \frac{\mathrm{d}^2}{\mathrm{d}\xi^2} + \frac{1}{2} \xi^2 \right] \hbar \omega, \tag{3}$$

where $\xi = x/b$ and $b = \sqrt{\hbar/m\omega}$. The expression multiplying $\hbar\omega$ in eq.(3) will be denoted H_{ξ} . The corresponding hamiltonians for the y and z coordinates are denoted H_{η} and H_{ζ} respectively.

The canonical commutation relation $[x, p_x] = [x, -i\hbar d/dx] = i\hbar$ can be rewritten as $[\xi, d/d\xi] = -1$, which leads to

$$[\xi + \frac{\mathrm{d}}{\mathrm{d}\xi}, \xi - \frac{\mathrm{d}}{\mathrm{d}\xi}] = 2$$

and

$$(\xi - \frac{\mathrm{d}}{\mathrm{d}\xi})(\xi + \frac{\mathrm{d}}{\mathrm{d}\xi}) = \xi^2 - \frac{\mathrm{d}^2}{\mathrm{d}\xi^2} - 1 = 2H_\xi - 1.$$

So, in terms of

$$a_{\xi} = \frac{1}{\sqrt{2}} (\xi + \frac{\mathrm{d}}{\mathrm{d}\xi}) \tag{4}$$

and
$$a_{\xi}^{\dagger} = \frac{1}{\sqrt{2}} (\xi - \frac{\mathrm{d}}{\mathrm{d}\xi}),$$
 (5)

(which are hermitian conjugates of one another, since the operator $p_{\xi} = -i d/d\xi$ is hermitian),

$$H_{\xi} = a_{\xi}^{\dagger} a_{\xi} + \frac{1}{2},\tag{6}$$

where
$$[a_{\xi}, a_{\xi}^{\dagger}] = 1$$
 (7)

and
$$[a_{\xi}, a_{\xi}] = 0 = [a_{\xi}^{\dagger}, a_{\xi}^{\dagger}].$$
 (8)

$$\hat{n}_{\xi} = a_{\xi}^{\dagger} a_{\xi},\tag{9}$$

which is called the number operator for ξ , it follows from eqs. (7,8) that

$$[\hat{n}_{\xi}, a_{\xi}^{\dagger}] = a_{\xi}^{\dagger} \quad \text{and} \quad [\hat{n}_{\xi}, a_{\xi}] = -a_{\xi},$$
 (10)

using the commutator identity [AB, C] = A[B, C] + [A, C]B. The number operator \hat{n}_{ξ} is hermitian and positive definite, so must have non-negative real eigenvalues. Let $|\alpha\rangle$ be an eigenstate of \hat{n}_{ξ} with eigenvalue α . Then

$$\hat{n}_{\xi}a_{\xi}|\alpha\rangle = ([\hat{n}_{\xi}, a_{\xi}] + a_{\xi}\hat{n}_{\xi})|\alpha\rangle = (\alpha - 1)a_{\xi}|\alpha\rangle,$$

so $a_{\xi}|\alpha\rangle$ is an eigenstate of \hat{n}_{ξ} with eigenvalue $\alpha-1$. It follows that $(a_{\xi})^m|\alpha\rangle$ is an eigenstate of \hat{n}_{ξ} with eigenvalue $\alpha-m$, for any integer m. Whatever the value of α , there will be some m for which $\alpha-m<0$, which is a contradiction, unless $a_{\xi}|\alpha-m+1\rangle=0$, which implies $\hat{n}_{\xi}|\alpha-m+1\rangle=(\alpha-m+1)|\alpha-m+1\rangle=0 \Longrightarrow \alpha=m-1$. So there must exist a state $|0\rangle$ such that

$$a_{\xi}|0\rangle = 0. \tag{11}$$

It will satisfy $\hat{n}_{\xi}|0\rangle = 0$ and is the ground state of the number operator. The eigenvalues of the number operator are non-negative integers, which justifies its name.

Now $\left[\hat{n}_{\xi}, \left(a_{\xi}^{\dagger}\right)^{m}\right] = \left[\hat{n}_{\xi}, a_{\xi}^{\dagger}\right] \left(a_{\xi}^{\dagger}\right)^{m-1} + a_{\xi}^{\dagger} \left[\hat{n}_{\xi}, \left(a_{\xi}^{\dagger}\right)^{m-1}\right]$, which leads to the recursion relation $\left[\hat{n}_{\xi}, \left(a_{\xi}^{\dagger}\right)^{m}\right] = \left(a_{\xi}^{\dagger}\right)^{m} + a_{\xi}^{\dagger} \left[\hat{n}_{\xi}, \left(a_{\xi}^{\dagger}\right)^{m-1}\right]$ and hence, eventually, to $\left[\hat{n}_{\xi}, \left(a_{\xi}^{\dagger}\right)^{m}\right] = m \left(a_{\xi}^{\dagger}\right)^{m}$. Therefore, the eigenstates of \hat{n}_{ξ} are $\left(a_{\xi}^{\dagger}\right)^{m} |0\rangle$, for any integer m, with eigenvalues m. Finally, these are the eigenstates of the one-dimensional harmonic oscillator H_{x} , with eigenvalues $\left(m + \frac{1}{2}\right)\hbar\omega$.

The ground state, or vacuum, $|0\rangle$ lies at energy $\hbar\omega/2$ and the excited states are spaced at equal energy intervals of $\hbar\omega$. The operator a_ξ^\dagger increases the energy by one unit of $\hbar\omega$ and can be considered as creating a single excitation, called a quantum or phonon. The operator a_ξ lowers the energy by one unit of $\hbar\omega$ and can be considered as destroying a quantum. Because the creation and destruction operators each commute with themselves, multiquantum states are unchanged under exchange of quanta, which therefore behave as bosons.

Since the isotropic three-dimensional harmonic oscillator hamiltonian is

$$H = H_x + H_y + H_z, (12)$$

(and the different one-dimensional hamiltonians H_{ρ} commute with one another) its eigenstates are simultaneous eigenvectors of H_{ρ} , with $\rho = x, y, z$, and its spectrum is

$$E(n_x, n_y, n_z) = (n_x + n_y + n_z + \frac{3}{2})\hbar\omega,$$
(13)

for any non-negative integers n_x, n_y, n_z . Denoting $N = n_x + n_y + n_z$, this can be rewritten $E_N = (N + \frac{3}{2})\hbar\omega$ and each level E_N is degenerate, the degeneracy being the number of ways of writing N as a sum of three non-negative integers, namely (N+1)(N+2)/2.

[For given N, choose $n_x = 0, 1, \ldots, N$ and $n_y = 0, 1, \ldots, N - n_x$, with n_z then being determined as $N - n_x - n_y$. For each n_x , there are $(N - n_x + 1)$ choices for n_y , so the total number of choices is $\sum_{n_x=0}^{N} (N+1-n_x) = (N+1)(N+2)/2$.]

It is generally (though not universally) true that degeneracy in the spectrum of a hamiltonian can be attributed to the existence of a symmetry. The isotropic oscillator is rotationally invariant, so could be solved, like any central force problem, in spherical coordinates. The angular dependence produces spherical harmonics $Y_{\ell m}$ and the radial dependence produces the eigenvalues $E_{n\ell} = (2n + \ell + \frac{3}{2})\hbar\omega$, dependent on the angular momentum ℓ but independent of the projection m. The spherical symmetry is responsible for the $(2\ell + 1)$ -fold degeneracy arising from the independence of m, but there remains a further degeneracy of different n, ℓ values with the same value of $2n + \ell$, where n and ℓ are non-negative integers. Denoting $N = 2n + \ell$, it is straightforward to check that the total degeneracy (including the $(2\ell+1)$ -fold degeneracy of each ℓ level) is again (N+1)(N+2)/2, as it must be.

[For given N, as n takes the values $0, 1, \ldots$, the values of ℓ are $N, N-2, N-4, \ldots, 1$ or 0, and are all even if N is even, all odd if N is odd. The total degeneracy of the N^{th} level is $\sum_{\ell} (2\ell+1)$, where the upper limit on the sum is the largest integer no larger than N/2, the lower limit is 0 or 1, for N even or odd, respectively, and ℓ increases by steps of 2.]

This suggests the existence of a larger symmetry, including rotational symmetry but going further.

From eq.(2),

$$H = H_x + H_y + H_z = (\hat{n}_{\xi} + \hat{n}_{\eta} + \hat{n}_{\zeta} + \frac{3}{2})\hbar\omega = (\hat{N} + \frac{3}{2})\hbar\omega,$$
 (14)

and the three number operators are easily seen to commute with one another, with the total number operator \hat{N} and with H. The creation and destruction operators obey the boson commutation relations

$$[a_{\rho}, a_{\sigma}^{\dagger}] = \delta_{\rho\sigma}$$

$$[a_{\rho}, a_{\sigma}] = 0$$

$$[a_{\rho}^{\dagger}, a_{\sigma}^{\dagger}] = 0,$$
(15)

where $\rho, \sigma = \xi, \eta, \zeta$. The three bosons, ξ, η, ζ , are completely equivalent to one another, differing only in their labels, so interchanging their identities should have no effect. Such an operation is performed by the binary operators $a_{\rho}^{\dagger}a_{\sigma}$, which destroy a quantum of type σ and create a quantum of type ρ , equivalent to replacing a σ boson by a ρ boson. There are nine such operators, the three number operators ($\rho = \sigma$) and six off-diagonal operators ($\rho \neq \sigma$).

The commutators

$$\left[a_{\mu}^{\dagger}a_{\nu}, a_{\rho}^{\dagger}a_{\sigma}\right] = \delta_{\nu\rho}a_{\mu}^{\dagger}a_{\sigma} - \delta_{\mu\sigma}a_{\rho}^{\dagger}a_{\nu} \tag{16}$$

(where use has been made of the commutator identity [AB,CD]=A[B,C]D+AC[B,D]+[A,C]DB+C[A,D]B) produce linear combinations of the nine binary operators, which thus form a set closed under commutation. The vector space spanned by these operators therefore constitutes a Lie algebra. The largest mutually commuting subset of operators consists of $\{\hat{n}_{\xi}, \hat{n}_{\eta}, \hat{n}_{\zeta}\}$ and will be chosen as the Cartan subalgebra.

The Lie products shown in eq.(16) imply

$$\begin{split} & [\hat{n}_{\xi}, a_{\xi}^{\dagger} a_{\eta}] = a_{\xi}^{\dagger} a_{\eta}; & [\hat{n}_{\eta}, a_{\xi}^{\dagger} a_{\eta}] = -a_{\xi}^{\dagger} a_{\eta}; & [\hat{n}_{\zeta}, a_{\xi}^{\dagger} a_{\eta}] = 0; \\ & [\hat{n}_{\xi}, a_{\eta}^{\dagger} a_{\xi}] = -a_{\eta}^{\dagger} a_{\xi}; & [\hat{n}_{\eta}, a_{\eta}^{\dagger} a_{\xi}] = a_{\eta}^{\dagger} a_{\xi}; & [\hat{n}_{\zeta}, a_{\eta}^{\dagger} a_{\xi}] = 0; \\ & [\hat{n}_{\xi}, a_{\eta}^{\dagger} a_{\zeta}] = 0; & [\hat{n}_{\eta}, a_{\eta}^{\dagger} a_{\zeta}] = a_{\eta}^{\dagger} a_{\zeta}; & [\hat{n}_{\zeta}, a_{\eta}^{\dagger} a_{\zeta}] = -a_{\eta}^{\dagger} a_{\zeta}; \\ & [\hat{n}_{\xi}, a_{\zeta}^{\dagger} a_{\eta}] = 0; & [\hat{n}_{\eta}, a_{\zeta}^{\dagger} a_{\eta}] = -a_{\zeta}^{\dagger} a_{\eta}; & [\hat{n}_{\zeta}, a_{\zeta}^{\dagger} a_{\eta}] = a_{\zeta}^{\dagger} a_{\eta}; \\ & [\hat{n}_{\xi}, a_{\zeta}^{\dagger} a_{\xi}] = -a_{\zeta}^{\dagger} a_{\xi}; & [\hat{n}_{\eta}, a_{\zeta}^{\dagger} a_{\xi}] = 0; & [\hat{n}_{\zeta}, a_{\zeta}^{\dagger} a_{\xi}] = a_{\zeta}^{\dagger} a_{\xi}; \\ & [\hat{n}_{\xi}, a_{\xi}^{\dagger} a_{\zeta}] = a_{\xi}^{\dagger} a_{\zeta}; & [\hat{n}_{\eta}, a_{\xi}^{\dagger} a_{\zeta}] = 0; & [\hat{n}_{\zeta}, a_{\xi}^{\dagger} a_{\zeta}] = -a_{\xi}^{\dagger} a_{\zeta}, \end{split}$$

i.e. the six off-diagonal products are the root vectors of the algebra, with roots (1,-1,0), (-1,1,0), (0,1,-1), (0,-1,1), (-1,0,1) and (1,0,-1), in the order listed above. The Killing form on the Cartan subalgebra is given by

$$g_{ij} = \sum_{\alpha} \alpha_i \alpha_j = \begin{pmatrix} 8 & -4 & -4 \\ -4 & 8 & -4 \\ -4 & -4 & 8 \end{pmatrix}, \tag{17}$$

which has a vanishing determinant. A singular Killing form means this Lie algebra is not semi-simple.

Since each of the roots α , including the three zero roots, satisfies $\sum_i \alpha_i = 0$, it follows that $\sum_{\rho} \hat{n}_{\rho} = \hat{N}$ commutes with all nine generators of the algebra (as can also be seen directly from the list of Lie products), which therefore has a non-trivial center and hence contains an Abelian ideal. This is the reason the algebra is not semi-simple. It is necessary to separate the total number operator \hat{N} from the rest of the generators, leaving a set of eight generators, made up of the six off-diagonal products and two independent linear combinations of the three number operators \hat{n}_{ρ} . A convenient simple choice is

$$h_1 = \hat{n}_{\xi} - \hat{n}_{\eta}$$

 $h_2 = \hat{n}_{\eta} - \hat{n}_{\zeta},$ (18)

in terms of which $\hat{n}_{\xi} = (\hat{N} + 2h_1 + h_2)/3$, $\hat{n}_{\eta} = (\hat{N} - h_1 + h_2)/3$ and $\hat{n}_{\zeta} = (\hat{N} - h_1 - 2h_2)/3$. The resulting set of eight operators is closed under commutation and generates a Lie algebra.

[Closure is evident, by inspection of eq.(16), for all Lie products except the commutators $[a_{\rho}^{\dagger}a_{\sigma}, a_{\sigma}^{\dagger}a_{\rho}] = \hat{n}_{\rho} - \hat{n}_{\sigma}$, with $\rho \neq \sigma$. But the difference between any two \hat{n} 's contains only h_1 and h_2 , so closure is confirmed.]

The original algebra of dimension 9 has been decomposed into the direct sum of an algebra of dimension 1 and an algebra of dimension 8, the former being generated by \hat{N} . Since \hat{N} , and hence H, commutes with all the generators of the algebra of dimension 8, the latter is a symmetry of the isotropic harmonic oscillator.

The Cartan subalgebra of the algebra of dimension 8 can now be chosen to be $\{h_1, h_2\}$, with the same 6 root vectors as before, but now with the roots (2, -1), (-2, 1), (-1, 2), (1, -2), (-1, -1) and (1, 1). In terms of the root-space basis $\{(1, 0), (0, 1)\}$, the positive roots are (2, -1), (1, -2) and (1, 1). Since (2, -1) = (1, -2) + (1, 1), the simple roots are $\alpha^{(1)} = (1, -2)$ and $\alpha^{(2)} = (1, 1)$.

The Killing form on the Cartan subalgebra is now $g=\begin{pmatrix}12&-6\\-6&12\end{pmatrix}$ and is non-singular, so the metric is

$$g^{-1} = \frac{1}{18} \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}. \tag{19}$$

The scalar products of simple roots are $\alpha^{(1)} \cdot \alpha^{(1)} = \frac{1}{3}$, $\alpha^{(2)} \cdot \alpha^{(2)} = \frac{1}{3}$ and $\alpha^{(1)} \cdot \alpha^{(2)} = -\frac{1}{6}$ and the Cartan matrix is

$$A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}, \tag{20}$$

with corresponding Dynkin diagram \bigcirc — \bigcirc . The algebra is \mathcal{A}_2 , or $\mathfrak{su}(3)$. The original dimension-9 algebra can be identified as $\mathfrak{u}(3) = \mathfrak{u}(1) \oplus \mathfrak{su}(3)$.

As pointed out, all the generators of this $\mathfrak{su}(3)$ algebra commute with \hat{N} and hence with H, so that, by Schur's lemma, every irrep has a well-defined value of N, the total number of quanta, and a well-defined energy. The lowest-energy irrep has N=0, no quanta of excitation, and an energy $E_0=\frac{3}{2}\hbar\omega$. It has dimension 1 and is spanned by the vacuum state $|0\rangle$. Since $h_1|0\rangle=0=h_2|0\rangle$, the vacuum has weight (0,0) and the irrep is the singlet (0,0) of $\mathfrak{su}(3)$.

The irrep of next higher energy must have N=1, energy $E_1=\frac{5}{2}\hbar\omega$, and its basis states are generated by acting with a_{ρ}^{\dagger} on the vacuum. There are 3 independent states, corresponding to $\rho=\xi,\eta,\zeta$. Note that $[h_1,a_{\xi}^{\dagger}]=a_{\xi}^{\dagger},$ $[h_2,a_{\xi}^{\dagger}]=0;$ $[h_1,a_{\eta}^{\dagger}]=-a_{\eta}^{\dagger},$ $[h_2,a_{\eta}^{\dagger}]=a_{\eta}^{\dagger};$ $[h_1,a_{\zeta}^{\dagger}]=0,$ $[h_2,a_{\zeta}^{\dagger}]=-a_{\zeta}^{\dagger},$ while $[a_{\rho}^{\dagger}a_{\sigma},a_{\tau}^{\dagger}]=\delta_{\sigma\tau}a_{\rho}^{\dagger}$, so that the three creation operators a_{ρ}^{\dagger} span a 3-dimensional invariant subspace and have weights (1,0), (-1,1) and (0,-1) respectively. It can be checked that these are also the Dynkin indices of the weights. The creation operators belong to the 3-dimensional irrep (1,0) of $\mathfrak{su}(3)$. Since the vacuum is a singlet (0,0), the three one-quantum states $a_{\rho}^{\dagger}|0\rangle$ also belong to the (1,0) irrep and are degenerate, at energy E_1 .

The two-quantum states are obtained by acting twice with creation operators on the vacuum and might be expected to include 9 states, but because of the boson symmetry $a^{\dagger}_{\rho}a^{\dagger}_{\sigma}=a^{\dagger}_{\sigma}a^{\dagger}_{\rho}$ there are only six independent states. Since the commutator of an operator of structure $a^{\dagger}a$ with an operator of structure $a^{\dagger}a^{\dagger}$ is an operator of structure $a^{\dagger}a^{\dagger}$, the latter span a 6-dimensional invariant subspace. The $\mathfrak{su}(3)$ product decomposition $(1,0)\otimes(1,0)=(2,0)\oplus(0,1)$ contains the 6-dimensional irrep (2,0) and the 3-dimensional irrep (0,1), so the 2-quantum excited states can be identified as belonging to the (2,0) irrep. They are degenerate, at energy $E_2=\frac{7}{2}\hbar\omega$.

The next step, constructing the 3-quantum states, involves the su(3) product decomposition $(1,0)\otimes(2,0)=(3,0)\oplus(1,1)$, leading to the 10-dimensional irrep (3,0) and the 8-dimensional irrep (1,1). It is straightforward to confirm that there are ten independent 3-quantum products (again exploiting the boson symmetry between quanta) and that they span an invariant subspace. The 3-quantum states belong to the 10-dimensional irrep (3,0) and are degenerate, at energy $E_3 = \frac{9}{2}\hbar\omega$.

Continuing this process, step by step, establishes that the N-quantum states belong to the irrep (N,0), of dimension (N+1)(N+2)/2, and are degenerate, at energy $E_N = (N+\frac{3}{2})\hbar\omega$. The degeneracy of the isotropic harmonic oscillator is entirely due to an $\mathfrak{su}(3)$ symmetry of the hamiltonian. The restriction to the (N,0) irreps is a consequence of the exchange sym-

metry of the multi-quantum system — only states totally symmetric under interchange of quanta are admitted. (This is a concrete example of a general feature of symmetries. Accommodating simultaneously several compatible symmetries will generally constrain the acceptable irreps of the symmetries involved.)

The only remaining issue is the angular momentum ℓ content of the (N,0) irrep of $\mathfrak{su}(3)$. This irrep contains (N+1)(N+2)/2 weights, all non-degenerate. The canonical subalgebra chain $\mathfrak{su}(3) \supset \mathfrak{su}(2)$ has the branching rule $(N,0) \to (N) \oplus (N-1) \oplus (N-2) \oplus \ldots \oplus (2) \oplus (1)$, in terms of Dynkin indices, corresponding to $j=N/2, (N-1)/2, (N-2)/2, \ldots, 1, 1/2$. This is clearly not relevant to the always-integer angular momentum ℓ of the isotropic oscillator. However, the set of three antisymmetric combinations of off-diagonal operators, $\{a_{\xi}^{\dagger}a_{\eta}-a_{\eta}^{\dagger}a_{\xi},a_{\eta}^{\dagger}a_{\zeta}-a_{\zeta}^{\dagger}a_{\eta},a_{\zeta}^{\dagger}a_{\xi}-a_{\xi}^{\dagger}a_{\zeta}\}$ is closed under commutation and generates the algebra $\mathfrak{so}(3)$. (This is a special case of the general result that n independent bosons generate the algebra $\mathfrak{so}(n)$ via the n(n-1)/2 antisymmetric operators $a_{i}^{\dagger}a_{j}-a_{j}^{\dagger}a_{i}$, where the indices i,j label the bosons and run from 1 to n.) The subalgebra chain $\mathfrak{su}(3) \supset \mathfrak{so}(3)$ then provides the appropriate ℓ content for the (N,0) irreps, namely $\ell=N,N-2,N-4,\ldots,1$ or 0, as follows.

The orbital angular momentum $\vec{L} = \vec{r} \times \vec{p}$ can be rewritten in terms of creation and destruction operators, as defined in eqs.(4) and (5), in the form

$$L_z = xp_y - yp_x = -i\hbar(\xi \frac{\partial}{\partial \eta} - \eta \frac{\partial}{\partial \xi}) = -i\hbar(a_{\xi}^{\dagger} a_{\eta} - a_{\eta}^{\dagger} a_{\xi}), \tag{21}$$

and cyclically in x, y, z. Up to a factor i and a scale factor \hbar , these are just the generators identified above as those of so(3). It is evident from the structure of the three generators L_{ρ} that $L_{\rho}|0\rangle = 0$, so the vacuum state has angular momentum 0.

Straightforward evaluation of commutators leads to the set of relations

$$\begin{split} [L_x,a_\xi^\dagger] &= 0; & [L_x,a_\eta^\dagger] = i\hbar a_\zeta^\dagger; & [L_x,a_\zeta^\dagger] = -i\hbar a_\eta^\dagger; \\ [L_y,a_\xi^\dagger] &= -i\hbar a_\zeta^\dagger; & [L_y,a_\eta^\dagger] = 0; & [L_y,a_\zeta^\dagger] = i\hbar a_\xi^\dagger; \\ [L_z,a_\xi^\dagger] &= i\hbar a_\eta^\dagger; & [L_z,a_\eta^\dagger] = -i\hbar a_\xi^\dagger; & [L_z,a_\zeta^\dagger] = 0, \end{split}$$

from which it follows that the three quantities

$$a_0^{\dagger} = a_{\zeta}^{\dagger}; \quad a_{+1}^{\dagger} = -\frac{1}{\sqrt{2}} \left(a_{\xi}^{\dagger} + i a_{\eta}^{\dagger} \right); \quad a_{-1}^{\dagger} = \frac{1}{\sqrt{2}} \left(a_{\xi}^{\dagger} - i a_{\eta}^{\dagger} \right)$$
 (22)

satisfy the equations

$$[L_z, a_{\pm 1}^{\dagger}] = \pm \hbar a_{\pm 1}^{\dagger} \tag{23}$$

$$[L_z, a_0^{\dagger}] = 0 \tag{24}$$

$$[L_{+}, a_{+1}^{\dagger}] = 0 (25)$$

$$[L_+, a_0^{\dagger}] = \sqrt{2}\hbar a_{+1}^{\dagger}$$
 (26)

$$[L_{+}, a_{-1}^{\dagger}] = \sqrt{2}\hbar a_{0}^{\dagger}$$
 (27)

$$[L_{-}, a_{+1}^{\dagger}] = \sqrt{2}\hbar a_{0}^{\dagger}$$
 (28)

$$[L_{-}, a_{0}^{\dagger}] = \sqrt{2}\hbar a_{-1}^{\dagger}$$
 (29)

$$[L_{-}, a_{-1}^{\dagger}] = 0 (30)$$

with the usual step operators $L_{\pm} = L_x \pm iL_y$. These are recognised as the defining properties of the spherical components of a vector operator \vec{a}^{\dagger} , so that the states $a^{\dagger}_{\mu}|0\rangle$, with $\mu = -1, 0, +1$, have angular momentum 1 and projection μ (both in units of \hbar).

The angular momentum content of multi-quantum states can now easily be deduced. Each quantum (action of a creation operator a^{\dagger} on the vacuum) carries a unit of angular momentum and a projection $\mu\hbar$. An N-quantum state has a maximum possible total angular momentum projection of $N\hbar$ (all N quanta having projection $+\hbar$). There is only one such state, which must then have angular momentum $N\hbar$. There will thus be 2N+1 states of angular momentum $N\hbar$, with all possible projections from $-N\hbar$ to $+N\hbar$, in unit steps. The next highest projection attainable with N quanta is $(N-1)\hbar$, containing N-1 quanta with projection $+\hbar$ and one quantum with projection 0. (Note that the identity of the quanta means that there is no significance to their order — this is characteristic of bosonic excitations.) There is only one way to make such a projection, so only one state of this projection, which must belong to the L=N state already found. There is therefore no state of angular momentum L=N-1.

The next lower projection, $(N-2)\hbar$, can be made up in two different ways — N-2 times $+\hbar$ and twice 0, or N-1 times $+\hbar$ and once $-\hbar$. Two independent linear combinations of these configurations can be formed, one belonging to the existing state of L=N and constructed by acting twice with the step-down operator L_- on the state with projection $N\hbar$. The other independent linear combination must belong to a state of angular momentum L=N-2.

This process can be continued. At each stage, the relevant value of the projection M is reduced by one and the number of ways of producing that M value is determined. If this is equal to the number of L values already established, then there is no new state with L = M; if the number is larger than the number of L values already established, then there are new states of L = M. But the number of ways of producing a given value of M is

easily established. The given value is obtained by selecting M quanta with projection +1 and N-M with projection 0. All other configurations with the same value of M are then obtained by replacing a pair of $\mu=0$ quanta by one with $\mu=+1$ and one with $\mu=-1$. So the number of configurations with a given value of M is just $\lfloor \frac{N-M}{2} \rfloor$, where $\lfloor x \rfloor$ is the largest integer no greater than x. This means that one new L value is introduced each time M decreases by 2. The allowed L values for a given N are $L=N,N-2,N-4,\ldots,1$ or 0, being even or odd according as N is even or odd. This is just the branching rule given above.