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Isotropic harmonic oscillator

The hamiltonian of the isotropic harmonic oscillator is

H = − h̄2

2m
~∇2 +

1

2
mω2~r 2 (1)

=
∑

ρ=x,y,z

[
− h̄2

2m

d2

dρ2
+

1

2
m2ω2ρ2

]
, (2)

a sum of three one-dimensional oscillators with equal masses m and angular
frequencies ω. The hamiltonian of the one-dimensional oscillator can be
rewritten in terms of dimensionless quantities as

Hx =

[
−1

2

d2

dξ2
+

1

2
ξ2

]
h̄ω, (3)

where ξ = x/b and b =
√
h̄/mω. The expression multiplying h̄ω in eq.(3) will

be denoted Hξ. The corresponding hamiltonians for the y and z coordinates
are denoted Hη and Hζ respectively.

The canonical commutation relation [x, px] = [x,−ih̄d/dx] = ih̄ can be
rewritten as [ξ, d/dξ] = −1, which leads to

[ξ +
d

dξ
, ξ − d

dξ
] = 2

and

(ξ − d

dξ
)(ξ +

d

dξ
) = ξ2 − d2

dξ2
− 1 = 2Hξ − 1.

So, in terms of

aξ =
1√
2

(ξ +
d

dξ
) (4)

and a†ξ =
1√
2

(ξ − d

dξ
), (5)

(which are hermitian conjugates of one another, since the operator pξ = −id/dξ
is hermitian),

Hξ = a†ξaξ +
1

2
, (6)

where [aξ, a
†
ξ] = 1 (7)

and [aξ, aξ] = 0 = [a†ξ, a
†
ξ]. (8)
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Denoting
n̂ξ = a†ξaξ, (9)

which is called the number operator for ξ, it follows from eqs.(7, 8) that

[n̂ξ, a
†
ξ] = a†ξ and [n̂ξ, aξ] = −aξ, (10)

using the commutator identity [AB,C] = A[B,C] + [A,C]B. The number
operator n̂ξ is hermitian and positive definite, so must have non-negative real
eigenvalues. Let |α〉 be an eigenstate of n̂ξ with eigenvalue α. Then

n̂ξaξ|α〉 = ([n̂ξ, aξ] + aξn̂ξ) |α〉 = (α− 1)aξ|α〉,

so aξ|α〉 is an eigenstate of n̂ξ with eigenvalue α− 1. It follows that (aξ)
m|α〉

is an eigenstate of n̂ξ with eigenvalue α −m, for any integer m. Whatever
the value of α, there will be some m for which α − m < 0, which is a
contradiction, unless aξ|α − m + 1〉 = 0, which implies n̂ξ|α − m + 1〉 =
(α−m+ 1)|α−m+ 1〉 = 0 =⇒ α = m− 1. So there must exist a state |0〉
such that

aξ|0〉 = 0. (11)

It will satisfy n̂ξ|0〉 = 0 and is the ground state of the number operator. The
eigenvalues of the number operator are non-negative integers, which justifies
its name.

Now
[
n̂ξ,

(
a†ξ
)m]

= [n̂ξ, a
†
ξ]
(
a†ξ
)m−1

+ a†ξ

[
n̂ξ,

(
a†ξ
)m−1

]
, which leads to the

recursion relation
[
n̂ξ,

(
a†ξ
)m]

=
(
a†ξ
)m

+ a†ξ

[
n̂ξ,

(
a†ξ
)m−1

]
and hence, eventu-

ally, to
[
n̂ξ,

(
a†ξ
)m]

= m
(
a†ξ
)m

. Therefore, the eigenstates of n̂ξ are
(
a†ξ
)m
|0〉,

for any integer m, with eigenvalues m. Finally, these are the eigenstates of
the one-dimensional harmonic oscillator Hx, with eigenvalues (m+ 1

2
)h̄ω.

The ground state, or vacuum, |0〉 lies at energy h̄ω/2 and the excited
states are spaced at equal energy intervals of h̄ω. The operator a†ξ increases
the energy by one unit of h̄ω and can be considered as creating a single
excitation, called a quantum or phonon. The operator aξ lowers the energy
by one unit of h̄ω and can be considered as destroying a quantum. Because
the creation and destruction operators each commute with themselves, multi-
quantum states are unchanged under exchange of quanta, which therefore
behave as bosons.

Since the isotropic three-dimensional harmonic oscillator hamiltonian is

H = Hx +Hy +Hz, (12)
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(and the different one-dimensional hamiltonians Hρ commute with one an-
other) its eigenstates are simultaneous eigenvectors of Hρ, with ρ = x, y, z,
and its spectrum is

E(nx, ny, nz) = (nx + ny + nz +
3

2
)h̄ω, (13)

for any non-negative integers nx, ny, nz. Denoting N = nx + ny + nz, this
can be rewritten EN = (N + 3

2
)h̄ω and each level EN is degenerate, the

degeneracy being the number of ways of writing N as a sum of three non-
negative integers, namely (N + 1)(N + 2)/2.

[For given N , choose nx = 0, 1, . . . , N and ny = 0, 1, . . . , N − nx,
with nz then being determined as N−nx−ny. For each nx, there
are (N − nx + 1) choices for ny, so the total number of choices is∑N
nx=0(N + 1− nx) = (N + 1)(N + 2)/2.]

It is generally (though not universally) true that degeneracy in the spec-
trum of a hamiltonian can be attributed to the existence of a symmetry.
The isotropic oscillator is rotationally invariant, so could be solved, like any
central force problem, in spherical coordinates. The angular dependence
produces spherical harmonics Y`m and the radial dependence produces the
eigenvalues En` = (2n+`+ 3

2
)h̄ω, dependent on the angular momentum ` but

independent of the projection m. The spherical symmetry is responsible for
the (2` + 1)-fold degeneracy arising from the independence of m, but there
remains a further degeneracy of different n, ` values with the same value of
2n+ `, where n and ` are non-negative integers. Denoting N = 2n+ `, it is
straightforward to check that the total degeneracy (including the (2`+1)-fold
degeneracy of each ` level) is again (N + 1)(N + 2)/2, as it must be.

[For given N , as n takes the values 0, 1, . . ., the values of ` are
N,N − 2, N − 4, . . . , 1 or 0, and are all even if N is even, all odd
if N is odd. The total degeneracy of the N th level is

∑
`(2`+ 1),

where the upper limit on the sum is the largest integer no larger
than N/2, the lower limit is 0 or 1, for N even or odd, respectively,
and ` increases by steps of 2.]

This suggests the existence of a larger symmetry, including rotational sym-
metry but going further.

From eq.(2),

H = Hx +Hy +Hz = (n̂ξ + n̂η + n̂ζ +
3

2
)h̄ω = (N̂ +

3

2
)h̄ω, (14)
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and the three number operators are easily seen to commute with one another,
with the total number operator N̂ and with H. The creation and destruction
operators obey the boson commutation relations

[aρ, a
†
σ] = δρσ

[aρ, aσ] = 0[
a†ρ, a

†
σ

]
= 0, (15)

where ρ, σ = ξ, η, ζ. The three bosons, ξ, η, ζ, are completely equivalent to
one another, differing only in their labels, so interchanging their identities
should have no effect. Such an operation is performed by the binary operators
a†ρaσ, which destroy a quantum of type σ and create a quantum of type ρ,
equivalent to replacing a σ boson by a ρ boson. There are nine such operators,
the three number operators (ρ = σ) and six off-diagonal operators (ρ 6= σ).

The commutators [
a†µaν , a

†
ρaσ

]
= δνρa

†
µaσ − δµσa†ρaν (16)

(where use has been made of the commutator identity [AB,CD] = A[B,C]D+
AC[B,D] + [A,C]DB + C[A,D]B) produce linear combinations of the nine
binary operators, which thus form a set closed under commutation. The
vector space spanned by these operators therefore constitutes a Lie algebra.
The largest mutually commuting subset of operators consists of {n̂ξ, n̂η, n̂ζ}
and will be chosen as the Cartan subalgebra.

The Lie products shown in eq.(16) imply

[n̂ξ, a
†
ξaη] = a†ξaη; [n̂η, a

†
ξaη] = −a†ξaη; [n̂ζ , a

†
ξaη] = 0;

[n̂ξ, a
†
ηaξ] = −a†ηaξ; [n̂η, a

†
ηaξ] = a†ηaξ; [n̂ζ , a

†
ηaξ] = 0;

[n̂ξ, a
†
ηaζ ] = 0; [n̂η, a

†
ηaζ ] = a†ηaζ ; [n̂ζ , a

†
ηaζ ] = −a†ηaζ ;

[n̂ξ, a
†
ζaη] = 0; [n̂η, a

†
ζaη] = −a†ζaη; [n̂ζ , a

†
ζaη] = a†ζaη;

[n̂ξ, a
†
ζaξ] = −a†ζaξ; [n̂η, a

†
ζaξ] = 0; [n̂ζ , a

†
ζaξ] = a†ζaξ;

[n̂ξ, a
†
ξaζ ] = a†ξaζ ; [n̂η, a

†
ξaζ ] = 0; [n̂ζ , a

†
ξaζ ] = −a†ξaζ ,

i.e. the six off-diagonal products are the root vectors of the algebra, with
roots (1,−1, 0), (−1, 1, 0), (0, 1,−1), (0,−1, 1), (−1, 0, 1) and (1, 0,−1), in
the order listed above. The Killing form on the Cartan subalgebra is given
by

gij =
∑
α

αiαj =

 8 −4 −4
−4 8 −4
−4 −4 8

 , (17)

which has a vanishing determinant. A singular Killing form means this Lie
algebra is not semi-simple.
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Since each of the roots α, including the three zero roots, satisfies
∑
i αi = 0,

it follows that
∑
ρ n̂ρ = N̂ commutes with all nine generators of the algebra

(as can also be seen directly from the list of Lie products), which therefore
has a non-trivial center and hence contains an Abelian ideal. This is the
reason the algebra is not semi-simple. It is necessary to separate the total
number operator N̂ from the rest of the generators, leaving a set of eight
generators, made up of the six off-diagonal products and two independent
linear combinations of the three number operators n̂ρ. A convenient simple
choice is

h1 = n̂ξ − n̂η
h2 = n̂η − n̂ζ , (18)

in terms of which n̂ξ = (N̂ + 2h1 + h2)/3, n̂η = (N̂ − h1 + h2)/3 and

n̂ζ = (N̂ − h1 − 2h2)/3. The resulting set of eight operators is closed under
commutation and generates a Lie algebra.

[Closure is evident, by inspection of eq.(16), for all Lie products
except the commutators [a†ρaσ, a

†
σaρ] = n̂ρ − n̂σ, with ρ 6= σ. But

the difference between any two n̂’s contains only h1 and h2, so
closure is confirmed.]

The original algebra of dimension 9 has been decomposed into the direct sum
of an algebra of dimension 1 and an algebra of dimension 8, the former being
generated by N̂ . Since N̂ , and hence H, commutes with all the generators of
the algebra of dimension 8, the latter is a symmetry of the isotropic harmonic
oscillator.

The Cartan subalgebra of the algebra of dimension 8 can now be chosen
to be {h1, h2}, with the same 6 root vectors as before, but now with the
roots (2,−1), (−2, 1), (−1, 2), (1,−2), (−1,−1) and (1, 1). In terms of the
root-space basis {(1, 0), (0, 1)}, the positive roots are (2,−1), (1,−2) and
(1, 1). Since (2,−1) = (1,−2) + (1, 1), the simple roots are α(1) = (1,−2)
and α(2) = (1, 1).

The Killing form on the Cartan subalgebra is now g =

(
12 −6
−6 12

)
and

is non-singular, so the metric is

g−1 =
1

18

(
2 1
1 2

)
. (19)

The scalar products of simple roots are α(1) · α(1) = 1
3
, α(2) · α(2) = 1

3
and

α(1) · α(2) = −1
6

and the Cartan matrix is

A =

(
2 −1
−1 2

)
, (20)
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with corresponding Dynkin diagram h h. The algebra is A2, or su(3).
The original dimension-9 algebra can be identified as u(3) = u(1)⊕ su(3).

As pointed out, all the generators of this su(3) algebra commute with
N̂ and hence with H, so that, by Schur’s lemma, every irrep has a well-
defined value of N , the total number of quanta, and a well-defined energy.
The lowest-energy irrep has N = 0, no quanta of excitation, and an energy
E0 = 3

2
h̄ω. It has dimension 1 and is spanned by the vacuum state |0〉. Since

h1|0〉 = 0 = h2|0〉, the vacuum has weight (0, 0) and the irrep is the singlet
(0, 0) of su(3).

The irrep of next higher energy must have N = 1, energy E1 = 5
2
h̄ω, and

its basis states are generated by acting with a†ρ on the vacuum. There are

3 independent states, corresponding to ρ = ξ, η, ζ. Note that [h1, a
†
ξ] = a†ξ,

[h2, a
†
ξ] = 0; [h1, a

†
η] = −a†η, [h2, a

†
η] = a†η; [h1, a

†
ζ ] = 0, [h2, a

†
ζ ] = −a†ζ ,

while [a†ρaσ, a
†
τ ] = δστa

†
ρ, so that the three creation operators a†ρ span a 3-

dimensional invariant subspace and have weights (1, 0), (−1, 1) and (0,−1)
respectively. It can be checked that these are also the Dynkin indices of the
weights. The creation operators belong to the 3-dimensional irrep (1, 0) of
su(3). Since the vacuum is a singlet (0, 0), the three one-quantum states a†ρ|0〉
also belong to the (1, 0) irrep and are degenerate, at energy E1.

The two-quantum states are obtained by acting twice with creation opera-
tors on the vacuum and might be expected to include 9 states, but because of
the boson symmetry a†ρa

†
σ = a†σa

†
ρ there are only six independent states. Since

the commutator of an operator of structure a†a with an operator of structure
a†a† is an operator of structure a†a†, the latter span a 6-dimensional invariant
subspace. The su(3) product decomposition (1, 0) ⊗ (1, 0) = (2, 0) ⊕ (0, 1)
contains the 6-dimensional irrep (2, 0) and the 3-dimensional irrep (0, 1), so
the 2-quantum excited states can be identified as belonging to the (2, 0) irrep.
They are degenerate, at energy E2 = 7

2
h̄ω.

The next step, constructing the 3-quantum states, involves the su(3) prod-
uct decomposition (1, 0)⊗(2, 0) = (3, 0)⊕(1, 1), leading to the 10-dimensional
irrep (3, 0) and the 8-dimensional irrep (1, 1). It is straightforward to con-
firm that there are ten independent 3-quantum products (again exploiting
the boson symmetry between quanta) and that they span an invariant sub-
space. The 3-quantum states belong to the 10-dimensional irrep (3, 0) and
are degenerate, at energy E3 = 9

2
h̄ω.

Continuing this process, step by step, establishes that the N -quantum
states belong to the irrep (N, 0), of dimension (N + 1)(N + 2)/2, and are
degenerate, at energy EN = (N + 3

2
)h̄ω. The degeneracy of the isotropic

harmonic oscillator is entirely due to an su(3) symmetry of the hamiltonian.
The restriction to the (N, 0) irreps is a consequence of the exchange sym-
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metry of the multi-quantum system — only states totally symmetric under
interchange of quanta are admitted. (This is a concrete example of a general
feature of symmetries. Accommodating simultaneously several compatible
symmetries will generally constrain the acceptable irreps of the symmetries
involved.)

The only remaining issue is the angular momentum ` content of the
(N, 0) irrep of su(3). This irrep contains (N + 1)(N + 2)/2 weights, all non-
degenerate. The canonical subalgebra chain su(3) ⊃ su(2) has the branch-
ing rule (N, 0) → (N) ⊕ (N − 1) ⊕ (N − 2) ⊕ . . . ⊕ (2) ⊕ (1), in terms of
Dynkin indices, corresponding to j = N/2, (N − 1)/2, (N − 2)/2, . . . , 1, 1/2.
This is clearly not relevant to the always-integer angular momentum ` of
the isotropic oscillator. However, the set of three antisymmetric combi-
nations of off-diagonal operators, {a†ξaη − a†ηaξ, a†ηaζ − a

†
ζaη, a

†
ζaξ − a

†
ξaζ} is

closed under commutation and generates the algebra so(3). (This is a special
case of the general result that n independent bosons generate the algebra
so(n) via the n(n − 1)/2 antisymmetric operators a†iaj − a†jai, where the
indices i, j label the bosons and run from 1 to n.) The subalgebra chain
su(3) ⊃ so(3) then provides the appropriate ` content for the (N, 0) irreps,
namely ` = N,N − 2, N − 4, . . . , 1 or 0, as follows.

The orbital angular momentum ~L = ~r × ~p can be rewritten in terms of
creation and destruction operators, as defined in eqs.(4) and (5), in the form

Lz = xpy − ypx = −ih̄(ξ
∂

∂η
− η ∂

∂ξ
) = −ih̄(a†ξaη − a†ηaξ), (21)

and cyclically in x, y, z. Up to a factor i and a scale factor h̄, these are
just the generators identified above as those of so(3). It is evident from the
structure of the three generators Lρ that Lρ|0〉 = 0, so the vacuum state has
angular momentum 0.

Straightforward evaluation of commutators leads to the set of relations

[Lx, a
†
ξ] = 0; [Lx, a

†
η] = ih̄a†ζ ; [Lx, a

†
ζ ] = −ih̄a†η;

[Ly, a
†
ξ] = −ih̄a†ζ ; [Ly, a

†
η] = 0; [Ly, a

†
ζ ] = ih̄a†ξ;

[Lz, a
†
ξ] = ih̄a†η; [Lz, a

†
η] = −ih̄a†ξ; [Lz, a

†
ζ ] = 0,

from which it follows that the three quantities

a†0 = a†ζ ; a†+1 = − 1√
2

(
a†ξ + ia†η

)
; a†−1 =

1√
2

(
a†ξ − ia†η

)
(22)

satisfy the equations

[Lz, a
†
±1] = ±h̄a†±1 (23)
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[Lz, a
†
0] = 0 (24)

[L+, a
†
+1] = 0 (25)

[L+, a
†
0] =

√
2h̄a†+1 (26)

[L+, a
†
−1] =

√
2h̄a†0 (27)

[L−, a
†
+1] =

√
2h̄a†0 (28)

[L−, a
†
0] =

√
2h̄a†−1 (29)

[L−, a
†
−1] = 0 (30)

with the usual step operators L± = Lx ± iLy. These are recognised as the
defining properties of the spherical components of a vector operator ~a†, so
that the states a†µ|0〉, with µ = −1, 0,+1, have angular momentum 1 and
projection µ (both in units of h̄).

The angular momentum content of multi-quantum states can now easily
be deduced. Each quantum (action of a creation operator a† on the vacuum)
carries a unit of angular momentum and a projection µh̄. An N -quantum
state has a maximum possible total angular momentum projection of Nh̄
(all N quanta having projection +h̄). There is only one such state, which
must then have angular momentum Nh̄. There will thus be 2N + 1 states of
angular momentum Nh̄, with all possible projections from −Nh̄ to +Nh̄, in
unit steps. The next highest projection attainable with N quanta is (N−1)h̄,
containing N−1 quanta with projection +h̄ and one quantum with projection
0. (Note that the identity of the quanta means that there is no significance
to their order — this is characteristic of bosonic excitations.) There is only
one way to make such a projection, so only one state of this projection, which
must belong to the L = N state already found. There is therefore no state
of angular momentum L = N − 1.

The next lower projection, (N − 2)h̄, can be made up in two different
ways — N − 2 times +h̄ and twice 0, or N − 1 times +h̄ and once −h̄. Two
independent linear combinations of these configurations can be formed, one
belonging to the existing state of L = N and constructed by acting twice
with the step-down operator L− on the state with projection Nh̄. The other
independent linear combination must belong to a state of angular momentum
L = N − 2.

This process can be continued. At each stage, the relevant value of the
projection M is reduced by one and the number of ways of producing that
M value is determined. If this is equal to the number of L values already
established, then there is no new state with L = M ; if the number is larger
than the number of L values already established, then there are new states
of L = M . But the number of ways of producing a given value of M is
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easily established. The given value is obtained by selecting M quanta with
projection +1 and N −M with projection 0. All other configurations with
the same value of M are then obtained by replacing a pair of µ = 0 quanta by
one with µ = +1 and one with µ = −1. So the number of configurations with
a given value of M is just bN−M

2
c, where bxc is the largest integer no greater

than x. This means that one new L value is introduced each timeM decreases
by 2. The allowed L values for a given N are L = N,N −2, N −4, . . . , 1 or 0,
being even or odd according as N is even or odd. This is just the branching
rule given above.
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