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The last time we have introduced the disorder parameter for the square-lattice
Ising model with H = 0. The disorder variables µx̃ are attached to the cites x̃ of the
dual lattice. Insertion of the pair µx̃1 µx̃2 into any correlation function is equivalent
to introducing some sort of ”dislocation line” Γx̃1 x̃2 on the dual lattice, with the
end-points at x̃1 and x̃2. Namely, in the distribution function of the spins σx

P{σ} ∼ eK
∑

nn
σxσy (2.1)

one changes the signs of K for all links of the original lattice which cross the contour
Γx̃1 x̃2 . This of course is equivalent to inserting factor

e−2K σxσy (2.2)

for every link (xy) which crosses Γ.

In what follows it will be convenient to split the pair

µx̃1 µx̃2 = T{Γx̃1 x̃2} (2.3)

into separate factors associated with individual insertions of µ. Since correlation
functions involving insertions (2.3) essentially depend only on the end-points x̃1 and
x̃2 but not on the exact form of the contour Γ (with the subtlety about the overall
sign, as we discussed the last time), one can split

Γx̃1 x̃2 = Γx̃1 + Γx̃2 , (2.4)

where the dual-lattice contour Γx̃ extends from some reference point x̃0 to x̃. In
fact, when an infinite lattice is considered, the most convenient thing to do is to
throw the point x̃0 away to infinity. In what follows I will always assume that
the contour Γx̃ starts at the left horizontal infinity and ends at x̃ (see Fig.1), and
identify

µx̃ = T{Γx̃} . (2.5)
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Let us now show that the Ising model with H = 0 is the theory of free fermions,
which makes it completely solvable. The fermions ψ(x) appear as the products of
the spin variable σx and the disorder variable µx̃ sitting at the nearby cite x̃ of the
dual lattice. There are four closest dual cites x̃ to every cite x, and to label them I
introduce four vectors

ea , a = 1, 2, 3, 4 ,

each of the length 1/
√
2, and each pointing at 45o to the original lattice axes, in

four possible directions NE, NW, SW, and SE

e 1e 2

e 3 e 4
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e1 → NE , e2 → NW , e3 → SW , e4 → SE . (2.6)

(of course this set has redundancy, e3 = −e1, e4 = −e2, but it is convenient to keep
separate notations for all four, as in (2.6)). The four dual cites closest to x are

x+ ea , a = 1, 2, 3, 4 . (2.7)

as is shown in Fig.2.

The fermion variables ψa ,x are defined as

ψa ,x = σx µx+ea . (2.8)

As these objects involve both σ and µ, there is the sign ambiguity which I have
mentioned already. Precise way how this ambiguity is fixed is not important, but
to make things as simple as possible I will always assume that the contour Γx̃

associated with µx̃ is a horizontal straight line from minus infinity to x̃, or it is
deformable to such straight line. It is convenient to use pictorial representations of
the objects (2.8) shown in Fig.3, where bold dots and crosses represent insertions
of σ and µ, respectively.

1, xψ

x

*

2, xψ

x

, x3
ψ

*
x

, x4
ψ

*

x*

Let us show that the variables (2.8), being inserted into any correlation function

⟨ · · · ψa ,x · · · ⟩ (2.9)

satisfy closed linear difference equation, which is the lattice version of the Dirac
equation.

Consider for instance
ψ1 ,x = σx µx+e1 . (2.10)
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The disorder part µx+e1 is by definition a product of the factors (2.2) (or (2.13)
below) along associated (horizontal) contour. One can split this product into the
product representing insertion µ at the next dual cite to the left, times the factor
associated with the last link (x+ e2,x+ e1) (see Fig.4)

µx+e1 = µx+e2 e
−2K σxσx+∆2 , (2.11)

where ∆2 is one of the basic vectors of the lattice

∆1 = e1 + e4 = (1, 0) , ∆2 = e1 + e2 = (0, 1) . (2.12)

Now, as usual

e−2K σxσx′ = cosh 2K − σxσx′ sinh 2K . (2.13)

Substituting (2.11) into (2.10), and using (2.13) as well as the fact that σ2
x = 1, one

finds

ψ1 ,x =
(
cosh 2K

)
ψ2 ,x −

(
sinh 2K

)
ψ3 ,x+∆2 . (2.14)

This calculation is illustrated in Fig.5.

x

*

x’

σx σx’−2 K
e

1, xψ

*
x

x’

x

*

x’

2, xψ
ψ

3, x’

x

*

x’

=

Cosh(2K)

=

Sinh(2K)+
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Similar equations can be derived for the other components ψa. This can be done
exactly as above provided one first makes appropriate deformation of the contour
associated with the disorder variable. To illustrate this last point, consider

ψ2 ,x = σx µx+e2 . (2.15)

Let us first deform the contour associated with the µ insertion here as is shown in
the Fig.6, and then apply the same transformation as in (2.11) to the last link of
this contour. We obtain

µx+e2 = µx+e3 e
−2K σx−∆1

σx = µx+e3

[(
cosh 2K

)
−
(
sinh 2K

)
σx−∆1σx

]
,

and then
ψ2 ,x =

(
cosh 2K

)
ψ3 ,x −

(
sinh 2K

)
ψ4 ,x−∆1 . (2.16)

2, xψ

xx’

*
x

x’ *

*

xx’

ψ
3, x

ψ
4, x’

*

xx’Cosh(2K) + Sinh(2K)

= =

The equations (2.14), (2.16), and similar equations for the other two compo-
nents of ψ can be written in the following symmetric form

ψa ,x =
(
cosh 2K

)
ψa+1 ,x −

(
sinh 2K

)
ψa+2 ,x+∆a+1 . (2.17)
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where ψa with a ̸= 1, 2, 3, 4 are defined by the equations

ψa+4 ,x = −ψa ,x . (2.18)

Also, by definition,

ea+4 = ea , ∆s+2 = −∆a .

The equation (2.18) is natural if one thinks of ψa+4 as the result of successive 90o

rotations of the object

ψa ,x = σx µx+ea .

Although the full 360o rotation returns σ and µ to the original positions, it is
important to remember that after such rotation the contour associated with µ winds
once around the point x (Fig.7); the minus sign in (2.18) appears as the result of
”unwinding” of this contour.

*
x

*
x

*
x

*

x*x

We observe that the composite objects ψa ,x obey linear ”equations of motion”
(2.17). This means that ψa is a free field. It is easy to see that ψa is fermi field. In
the language of the lattice correlation functions the signature of a fermi field is the
following property. Consider arbitrary correlation function of the form

⟨ · · ·ψa ,x1 ψa ,x2 · · · ⟩ . (2.19)
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Let us move the points x1 and x2 in such a way that as the result of the move they
interchange their positions, i.e.x1 → x1 and x2 → x1. For a fermi field such move
results in the change of the sign of the correlation function (2.19),

(2.19) → −⟨ · · ·ψa ,x2 ψa ,x1 · · · ⟩ . (2.20)

In simple words, (2.19) is antisymmetric in x1 and x2. It is easy to see that the
construction (2.15) guarantees this fermion exchange property - when one moves
the points to interchange their positions, either the contour associated with ψx1

crosses x2, or the other way round, the contour attached to ψx2 crosses x1 (see
Fig.8), leading to the minus sign. And it is easy to check that if in (2.19) one just
brings x1 around x2 all extra signs cancel and (2.19) returns to its original value -
the correlation function (2.19) is single valued, which means that ψa ,x is local fermi
field.

x2

x1

(a)

*

*

x2

x1

(b)

On the other hand, consider correlation function involving, besides ψa, any
number of σ, or any number of µ, or both, for instance

⟨ψa ,x σx1 µx̃2 · · · ⟩ (2.21)

It follows from the properties of σ and µ, and from our construction of ψ that such
correlation function changes sign every time x is brought around either x1 or x̃2.
One says that the fermi field ψa ,x is not local with respect to σ and µ.

Let me mention here few simple identities involving these fermi fields. As
follows directly from the definition (2.8), we have for instance

σx σx+∆1 = ψ1 ,x ψ2 ,x+∆1 = ψ4 ,x ψ3 ,x+∆1 (2.22)

and similarly for σxσx+∆2 , i.e. the energy density of the model

εx = −J
2

4∑
a=1

σxσx+∆a (2.23)
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is expressed as the fermion bilinear. Similar expressions exist for the nearest-
neighbor products

µx̃ µx̃+∆a .

In principle, the linear equations (2.17) (with suitable boundary conditions)
can be used to find exact solution of the Ising model directly on the lattice. The
solution shows critical point at

K = Kc , Kc =
1

2
log

(√
2 + 1

)
, (2.24)

exactly as duality predicts. When K → Kc the correlation length becomes large as
compared to the lattice spacing, and one can obtain continuous field theory by tak-
ing the scaling limit, i.e. the limit K → Kc accompanied by an appropriate change
of the length scale in order to keep the correlation length finite. This procedure
is straightforward but somewhat cumbersome. We can get to the same result by
taking the continuous limit directly in the linear equation (2.17).

Note that at the critical point K = Kc we have

cosh 2Kc =
√
2 , sinh 2Kc = 1 . (2.25)

One can check that with this coefficients the linear equations admit constant (i.e.
x-independent) solutions of the form

ψa = ωa C + ω̄a C̄ , (2.26)

where
ω = e

iπ
4 , ω̄ = e−

iπ
4 , (2.27)

and C and C̄ are arbitrary constants. This signals appearance of gapless modes
with infinite correlation radius. Indeed, if one writes

ψa =
ωa√
π
ψ(x) +

ω̄a√
π
ψ̄(x) (2.28)

and assumes that ψ(x) and ψ̄(x) have very slow rate of change at the lattice scales,
so that the lattice shift in the r.h.s. of (2.17) can be replaced by the derivative,

ψ(x+∆a) → ψ(x) +∆a ∂aψ(x) (2.29)

the equation (2.17) leads to(
∂1 + i∂2

)
ψ(x) = 0 ,

(
∂1 − i∂2

)
ψ̄(x) = 0 . (2.30)
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This has the form of massless Dirac equation in 2D (more precisely, (2.30) involves
self-conjugated spinor fields, i.e. it is the 2D Majorana equation).

If we slightly shift away from the critical point, i.e. set

K = Kc + k . (2.31)

with k << 1, the above gapless modes remain soft. Using

cosh 2K =
√
2 + 2k +O(k2) , sinh 2K = 1 + 2

√
2 k +O(k2) , (2.32)

and neglecting all terms beyond the linear one in k, one finds instead of (2.30)(
∂1 + i∂2

)
ψ(x) = im ψ̄(x) ,(

∂1 − i∂2
)
ψ̄(x) = −imψ(x) , (2.33)

which is massive Majorana equation, with the mass related to k

εm = 4 k , (2.34)

where I have restored the notation ε for the lattice spacing to make dimensional
counting straightforward. Taking the scaling limit amounts to sending k to zero,
while looking at the theory at the length scales of the order of the correlation length

R ∼ Rc = m−1 , R >> ε . (2.35)

We see that in this limit the Ising model reduces to the free M Majorana theory
described by the equations of motion (2.33).

Strictly speaking, establishing the equations of motion (2.33) is not sufficient to
prove equivalence. One has to find the boundary conditions which would determine
the correlation functions, most important of which concerns with the singularities of
the correlation functions at the coincident points. In deriving the equations (2.17)
we have ignored possibility of other insertions in the correlation function, assuming
that such extra insertions are located at finite lattice distance from the point x.
More careful analysis shows that if other fermion insertions are present at some
points x1, · · · xn, the equations (2.17) are violated by some constant (i.e. field
independent) terms when x hits one of the points xk. In the scaling limit these
terms modify (rather complete) the equations (2.33) as follows(
∂x1 + i∂x2

)
⟨ψ(x)ψ(y) X ⟩ = im ⟨ ψ̄(x)ψ(y) X ⟩+ iπ δ(x− y) ⟨ X ⟩+ · · · , (2.36)
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where X stands for any combination of the fermion insertions, and the r.h.s. can
have other delta-function terms if X contains ψ at other points. The second of the
equations (2.33) is completed by similar delta-function terms.

In short, the scaling limit of the Ising model at H = 0 is the free fermion field
theory whose properties can be encoded in the action

AFF =
1

2π

∫ [
ψ∂̄ψ + ψ̄∂ψ̄ + im ψ̄ψ

]
d2x (2.37)

In what follows I will use the complex coordinates

z = x1 + ix2 , z̄ = x1 − ix2 (2.38)

on the Euclidean plane. The derivatives in (2.37) stand for the complex derivatives

∂ = ∂z =
1

2
(∂1 − i∂2) , ∂̄ = ∂z̄ =

1

2
(∂1 + i∂2) . (2.39)

The correlation functions in this free theory can be understood in terms of the
gaussian functional integral

⟨ · · · ⟩ = Z−1

∫ [
Dψ,Dψ̄

] (
· · ·

)
e−AFF[ψ,ψ̄] (2.40)

over the Grassmanian (anticommuting) field variables ψ(x), ψ̄(x).

As the field theory, (2.40) is not terribly interesting. It contains a single sort
of neutral particles with fermion statistics, which otherwise do not interact. The
particle’s mass is |m| (remember, the parameter m ∼ K −Kc, it can be positive or
negative depending on whether we are in the low or in the high T phase). From
the point of view of the functional integral (2.40) itself the sign of m is irrelevant.
It can be changed by a simple change of variables in (2.40)

ψ → ψ , ψ̄ → −ψ̄ , m→ −m. (2.41)

The symmetry (2.41) is what the duality transformation of the Ising model does
to the fermion field of (2.40). According to my convention mε = 4(K − Kc) the
parameter m is positive in the low-T phase and it is negative in the high-T phase

high− T : m < 0 ,

low − T : m > 0 . (2.42)
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m = 0 corresponds to the critical point. In the high-T domain the free particles
are the ”spin-particles” - we will see that the spin insertion σ(x) can emit a single
particle. In the low-T phase the particles are rather interpreted as the ”kinks”
separating domains with opposite orientations of the spins.

Basic thermodynamic properties of the Ising theory near criticality are readily
derived from the gaussian functional integral (2.40). I’ll skip explicit calculation.
The specific free energy

F = − logZ

V
(2.43)

(V is the 2-volume of the space) develops the famous Onsager’s singularity

Fsing =
m2

8π
logm2 (2.44)

which leads to logarithmic divergence of the heat capacity near the critical point.
Magnetization and other related thermodynamic quantities will be discussed later
on.

As the particle theory (2.37) is rather boring. We would like to add more fun
by turning on the external field H (which, I remind, was set to zero in the previous
discussion). We would like to modify the action by adding corresponding term,
something proportional to the ”spin density”

A = AFF +H

∫
σ(x) d2x . (2.45)

But at this point it is not quite clear how to do that, how to understand the last
term in (2.45) in terms of the free-fermion theory. We first need to give useful
definition of the ”spin” field σ(x) in the free fermion theory (2.37) and find out all
we can about its properties. That is what we will be doing for the next few lectures.

The main property to start with was already observed in the lattice theory
(when looking at the correlation functions of the type (2.21)). Namely, if we consider
a correlation function which involves ψ(x) (or ψ̄(x)) as well as several σ-insertions,
i.e.

⟨ψ(x)σ(x1) · · ·σ(xn) · · · ⟩ (2.46)

it is a double-valued function of the Euclidean point x, which changes the sign every
time the point x is brought around any one of the points x1, x2, · · · xn, as is shown
in Fig.9. The same property holds true if one replaces ψ by ψ̄.
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However, this property alone does not define the field σ(x) uniquely. In fact,
there are infinitely many local fields which satisfy this property. Indeed, within the
lattice theory we could have taken a product of three spins in some neighboring
points, say

σx σx+∆1 σx−∆2 . (2.47)

(see Fig.10). By taking the scaling limit Rc >> ε we still shrink all such configu-
rations to a point, thus producing a local field. Obviously, this field (let’s for the
moment call it σ3(x)) has the same property that the product

ψ(x)σ3(x1) → −ψ(x)σ3(x1) (2.48)

changes sign when x goes around x1. One can throw in any odd number of the
lattice σ insertions at different finite lattice separations, and all will become local
fields with the same property (2.47). On top of that, there is the dual field µ(x),
which also brings along an infinite number of new fields.

Thus we have an infinite-dimensional space of ”spin fields”, the fields whose
product with ψ(x) has the property (2.48). I will denote this space R. By the
definition, for any O ∈ R the products

ψ(x)O(x1) → −ψ(x)O(x1) , ψ̄(x)O(x1) → −ψ̄(x)O(x1) (2.49)

change sign when x is brought around x1. R is the vector space since the sum of
any two fields satisfying the property (2.49) satisfies this property as well. On the
contrast, I will use the notation NS for the space of fields which are local with
respect to our free fermions (ψ, ψ̄). That means that for any field O ∈ NS the
product ψ(x)O(x1) → ψ(x)O(x1), i.e. does not change when x is brought around
x1. The structure of the space NS is more or less clear - it consists of all local
composite fields built from the fermions ψ and ψ̄ and their derivatives, like

ψ∂ψ , ψ̄∂nψ , etc . (2.50)

We need some tools to sort out the content of the space R of the ”spin fields”. The
notations R and NS are motivated by the terminology of the string theory - these
spaces are analogous to the Ramond and the Neveu-Schwartz sectors of the string
theory.

To make the analysis as simple as possible, let me consider first the case m = 0,
i.e. the critical point itself. In this case the theory (2.37) has no dimensional
parameters and hence enjoys the scaling symmetry. In fact it has larger conformal
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symmetry, and can be analyzed by methods of conformal field theory. I am planning
to discuss this point of view a bit later.

For now, it is important to note that at m = 0 the equations of motion (2.33)
simplify to

∂̄ψ = 0 , ∂ψ̄ = 0 . (2.51)

These equations state that ψ is holomorphic function of z = x1 + ix2, and likewise
ψ̄ is a holomorphic function of z̄ = x1 − ix2. For that reason I will write

ψ = ψ(z) , ψ̄ = ψ̄(z̄) . (2.52)

To be more precise, consider correlation function of the form

⟨ψ(z)O1(x1) · · ·On(xn) ⟩ . (2.53)

It is holomorphic function of z with possible singularities at the insertion points
x1, x2, · · · , xn where the equations of motion (2.52) are not valid. For instance, if
O1 ∈ NS, the singularity at z = x1 is single-valued, i.e. it is generally a pole.
Simple example is the two-point correlation function

⟨ψ(z)ψ(z′) ⟩ = 1

z − z′
, (2.54)

which is easily derived from the free-fermion theory (2.40) with m = 0 (in fact,
the special normalization of ψ responsible for the factor 1/π in the action (2.37)
was chosen to make (2.54) simple). If the product ψ(z)ψ(z′) appears in more
complicated correlation function, say

⟨ψ(z)ψ(z′) O2(x2) · · ·On(xn) ⟩ , (2.55)

the first-order pole at z = z′ is still there - after all, in the free-field theory it appears
from the Wick contraction of the pair of ψ’s - but the remaining part does not have
singularity at z = z′. This fact can be expressed in terms of the operator product
expansions

ψ(z)ψ(z′) =
1

z − z′
+ reg , ψ̄(z̄) ψ̄(z̄′) =

1

z̄ − z̄′
+ reg , (2.56)

where ”reg” stands for terms which are regular at z = z′ (or z̄ = z̄′). The operator
product expansions like (2.56) in Euclidean theory play role analogous to canonical
(anti)commutation relations of canonical approach.
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If, say, O1 in (2.53) is more complicated field fromNS, the singularity at z = z1
can be second or higher order pole.

Exercise 2: Consider composite fields (related to the components of the
energy-momentum tensor)

T (z) = −1

2
: ψ∂ψ : (z) , T̄ (z̄) = −1

2
: ψ̄∂̄ψ̄ : (z̄) , (2.57)

where : · · · : denotes the Wick ordering in the usual sense: all Wick contractions
inside : · · · : are excluded. Using Wick contractions (2.54) (and similar one for ψ̄
derive the operator product expansions

T (z)T (z′) =
1

4 (z − z′)4
+

2

(z − z′)2
T (z′) +

1

z − z′
∂T (z′) + reg , (2.58)

and similar one for the T̄ ’s.

For the fields from NS the operator product expansions are just fancy way to
describe the usual Wick rules. The situation is a bit different if we consider the
”spin fields”. Consider again correlation function

⟨ψ(z)O1(z1, z̄1) · · · ⟩ , (2.59)

but this time assume that O1 ∈ R. By definition of the spin fields, this correlation
function has square-root brunching point at z = z1, i.e. the analytic structure of
(2.59) at z sufficiently close to z1 can be described by the expansion

ψ(z)O1(z1, z̄1) =
∑
n∈Z

(z − z1)
−n−1/2O

(n)
1 (z1, z̄1) . (2.60)

The defining monodromy property of the product in the l.h.s. (the product changes
sign when z is brought around z1) is reflected in the half-integer powers in the
r.h.s. This equation can be understood as the operator product expansion, with the

coefficients O
(n)
1 in the r.h.s. being some fields belonging (as one easily checks) to

the space R,

O
(n)
1 ∈ R . (2.61)

Given a field O1 ∈ R, the expansion (2.60) provides definition of the fields O
(n)
1 .

Perhaps this role of the expansion (2.60) is more clear if one rewrites it in equivalent
form

O
(n)
1 (z1, z̄1) =

∮
z1

(
z − z1

)n−1/2
ψ(z)O1(z1, z̄1)

dz

2πi
, (2.62)
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where the integration is performed over closed contour which encircles the point
z1. Note that the integrand in (2.62) is single-valued in the vicinity of z1, and the
contour is indeed a closed one. Note also that the contour can be made arbitrary
small, close to the point z1; this makes it clear that the r.h.s of (2.62) defines a local
field (provided O1 is local) at the point (z1, z̄1).

The equation (2.62) defines a set of linear operators, labelled by the integer n,
acting in the space R. I will denote these operators an

an : R → R .

The operator an applied to any spin field O1 returns the l.h.s of (2.62). By this
definition,

anO1(z1, z̄1) = the r.h.s. of the Eq.(2.62)

Note that this explicit construction, the eq.(2.62), is given relative to the ’reference
point” z1.

Of course, the antiholomorphc component ψ̄ gives rise to similar set of operators
ān,

ānO(z1, z̄1) =

∮
z̄1

(
z̄ − z̄1

)n−1/2
ψ̄(z̄)O(z1, z̄1)

dz̄

2πi
, (2.63)

where the integration is over the counterclockwise contour in the z̄ plane.

Our nearest goal is to derive the commutation relations among the operators
an and ān; we will show that

{an, am} = δn+m,0 , {ān, ām} = δn+m,0 , (2.64)

and

{an, ām} = 0 , (2.65)

and that the space R has the structure of the fermion Fock space generated by these
operators.

let us consider the field anamO(z1), the result of successive application of the
operators am and an,

anamO(z1) =

∮
C

dz

2πi
ψ(z) (z−z1)n−1/2

∮
C′

dz′

2πi
ψ(z′) (z′−z1)m−1/2O(z1) . (2.66)
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The integration contours C and C ′ both encircle the point z1, but by definition,
according to the order of the operators anam in (2.66), the integration over z′

generating the action of am is performed first. In fact, the actual order of integration
is not important if we assume that the contour C ′ lays inside the contour C (Fig
11)- this is the arrangement which corresponds to order of operators written in
(2.66). On the other hand

amanO(z1)

∮
C′

dz′

2πi
ψ(z′) (z′ − z1)

m−1/2

∮
C

dz

2πi
ψ(z) (z − z1)

n−1/2O(z1) . (2.67)

where this time we assume that C lays inside C ′ (Fig 12), since the operator an
acts first.

If not for the order of integrations, the expressions (2.66) and (2.67) are almost
identical - (2.66) can be rewritten as (2.67) if one replaces the contours in Fig.11
by those in Fig 12 and also interchanges the positions of ψ(z) and ψ(z′). The
interchange of the ψ’s results only in the change of sign,

ψ(z)ψ(z′) = −ψ(z′)ψ(z) .

Now, the contours shown in Fig.11 can be transformed to those in Fig.12 by
moving C inside C ′. Since the operator product in the integrand in (2.66) is singular
at z = z′,

ψ(z)ψ(z′) =
1

z − z′
+ reg , (2.68)

one has to take into account the contribution of the residue of the pole in (2.67)
when moving C inside C ′. This contribution is∮

C′

dz′

2πi

∮
Cz′

dz

2πi
ψ(z)ψ(z′) (z − z1)

n−1/2 (z′ − z1)
m−1/2O(z1) , (2.69)

where Cz′ is a small contour surrounding the point z (Fig.13). This integral is
done by the residue calculation using (2.68), with the result

(2.69) =

∮
C′

dz′

2πi
(z′ − z1)

n+m−1O(z1) = δn+m,0O(z1) . (2.70)

As the result,
(2.66) = −(2.67) + (2.70) ,

which is the first of the anti-commutation relations (2.64). The rest of the anti-
commutators (2.64),(2.65) are derived in a similar way.
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