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The last time I have started to describe the properties of the IFT in the high-T
domain

High− T : η ≡ m

|h|8/15
< 0 . (10.1)

I have mentioned that at η = 0, where the theory is integrable, there are eight
stable particles, but only three of them are below the two-meson threshold 1,

η = 0 : M1, M2, M3 < 2M1 < M4, ..., M8 . (10.2)

Ones η is shifted away from zero five particles above the threshold loose their sta-
bility becoming resonance states. The fact that the decay channel M4, ...,M8 →
M1+M1 opens at any small eta can be established using perturbation theory around
the integrable theory η = 0. So, for η < 0 we have three or less stable particles.

To describe the most important properties of the IFT at η < 0, it is useful to
discuss in terms of the elastic 2 → 2 scattering amplitude. This we define as follows.
Let us denote A1(θ) the lightest particle, the one which has the mass M1, having
the rapidity θ, i.e. the energy-momentum Pµ = (E,P ) = (M1 cosh θ, M1 sinh θ).
Now, consider 2 → 2 scattering

A1(θ1) +A1(θ2) → A1(θ
′
1) +A1(θ

′
2) . (10.3)

It follows from the energy-momentum conservation that the rapidities of the outgo-
ing particles must coincide with the rapidities of the incoming ones, θ′1 = θ1 , θ′2 =
θ2, up to the interchange 1 ↔ 2. Therefore the two-particle in-state can be expanded
into the out-states as follows

| A1(θ1)A1(θ2) ⟩in = S11(θ1, θ2) | A1(θ1)A1(θ2) ⟩out + inelastic terms , (10.4)

1 The mass ratios at this point are known exactly, i.e.

M2 = 2M1 cos
π

5
, M3 = 2M1 cos

π

30
, M4 = 2M2 cos

7π

30
, etc
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where the ”inelastic terms” include all other possible products of the reaction,

inelastic terms =
∑

OUT ̸=A1+A1

(2π)2 δ
(
Pµ(θ1) + Pµ(θ2)− Pµ

OUT

)
×

×SA1+A1→OUT | OUT ⟩ . (10.5)

where OUT denote the the states like

OUT =
{
A1 +A2, A1 +A1 +A1, etc

}
. (10.6)

I will call the coefficient S11 in (10.4) the 2 → 2 elastic scattering amplitude.
By the Lorentz invariance it depends on the difference of the rapidities,

S11 = S11(θ) , θ = θ1 − θ2 . (10.7)

The analytic properties of the amplitudes as the functions of the variable θ are
discussed extensively in the context of integrable field theories and associated fac-
torizable S-matrices. So, I will be schematic here, and just emphasize the difference
in the analytic structure of S11(θ) in generic theory from that of the integrable one.

If one expresses the amplitude S11 in terms of the Mandelstam invariant s,

s =
(
pµ(θ1) + pµ(θ2)

)2
= 2M2

1

(
1 + cosh θ

)
, (t = 0 , u = 4M2

1 − s) (10.8)

then according to usual arguments the function S11(s) is analytic in the whole s-
plane with the exception of the real axis where the poles associated with the bound
states, and branch cuts due to the scattering states are located. The function S11(s)
obeys the cross-invariance property

S11(s) = S11(4M
2
1 − s) , (10.9)

and typical picture of the poles and cuts is shown in the Fig.1

xxxxxx∗∗∗∗∗∗∗∗∗∗∗∗∗−−−•−−−−•−−−∗∗∗∗∗∗∗∗∗∗∗∗∗xxxxxxx (Fig.1)

The branch cut from 4M2
1 to infinity is due to the two-particle states A1 +A1,

the cut from (M1 + M2)
2 reflects the states A1 + A2, further cuts come from the

multi-particle states.
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In an integrable theory all inelastic processes are forbidden, so the branching
points at the A1 + A1 threshold 4M2

1 , and its cross-image at 0, are all branching
points S11(s) has in the finite part of the s-plane. Then it is possible to show that
in terms of the rapidity variable θ,

θ : s = 4M2
1 cosh2

θ

2
(10.10)

the amplitude S11 is a meromorphic function,

S11(θ) : meromorphic function .

The cross-symmetry (10.9) and the two-particle unitarity condition SS† = I lead
to the equations

crossing : S(θ) = S(iπ − θ) , (10.11)

unitarity : S(θ)S(−θ) = 1 . (10.12)

When changing to the rapidities, the s-plane is mapped onto the ”physical
strip” 0 < ℑmθ < π

physical strip : 0 < ℑmθ < π ,

while the edges of the branch cuts from 4M2
1 to ∞ and from 0 to −∞ become the

positive and negative parts of the axes ℑmθ = 0 and ℑmθ = π, respectively. The
segment 0 < s < 4M2

1 of the real axis is mapped on the segment 0 < ℑmθ <
π , ℜe θ = 0; here the poles associated with the bound states are located. In
fact, it is possible to show that the poles with positive residues in the variable −iθ
correspond to the s-channel bound states, while the poles with negative residues in
that variable correspond to the u-channel images of these bound states. Finally,
according to (10.11) and (10.12) the amplitude S11(θ) is 2π i-periodic function of θ,

S11(θ) = S(θ + 2π i) . (10.13)

The situation is depicted in Fig.2, where the complex plane of the variable

α = −iθ (10.14)

is shown

−− | − −− ⋄ − −−− ⋄ −−−| − −− • − −−− • −−−| − − (Fig.2)
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The strip −π < ℑmθ < 0 (−π < ℜe α < 0) corresponds to the ”second shit”
of the s-surface. In Fig.2 the bullets represent possible poles, and the diamonds
denote corresponding zeros of the amplitude S11(θ).

In general, non-integrable case the inelastic channels are present, which is re-
flected in the appearance of the additional ”inelastic” branch cuts in Fig.1. Such
cuts are not eliminated by passing to the rapidity variable, therefore the 2 → 2
amplitude is no longer a meromorphic function, but it can have branch cuts along
the axes ℑmθ = 0, π mod 2π, as is shown in Fig.3

1/S 1/S∗ S S∗ 1/S

−−−−−− |−−−⋄−−−−⋄−−−|−−−•−−−−•−−−|−−− (Fig.3)

1/S∗ 1/S S∗ S 1/S∗

The relations (10.11) and (10.12) represent the two-particle unitarity, and hence
they remain valid in the general non-integrable case. The discontinuities across
the cuts in Fig.3 are related to inelastic elements of the S-matrix. The complete
unitarity condition is very complicated.

To get insight at the properties of the model we are going to follow evolution
of the poles and zeros of the amplitude S11(θ) as η changes from 0 to −∞. I am
going to describe what I believe is the most natural scenario of such evolution. In
the following drawings the inelastic branch cuts are not shown, but their presence
is implied unless stated otherwise.

As was already mentioned, at η = 0 the IFT is integrable, with factorizable
S-matrix. The basic 2 → 2 amplitude S11 can be found explicitly,

S11(θ) =
sinh θ + i sin(2π/3)

sinh θ − i sin(2π/3)

sinh θ + i sin(2π/5)

sinh θ − i sin(2π/5)

sinh θ + i sin(π/15)

sinh θ − i sin(π/15)
, (10.14)
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It shows presence of six poles in the physical strip, at

θ1 = 2πi/3 , θ2 = 2πi/5 , θ3 = π/15 , (10.15)

and
θ̄1 = πi/3 , θ̄2 = 3πi/5 , θ̄3 = 14π/15 . (10.16)

The poles (10.15) have positive residues in −iθ; they correspond to the particles
A1, A2, A3 (with the masses M1, M2, M3 respectively) appearing in the s-channel,
while (10.16) are the u-channel poles (they have negative residues in −iθ). The
situation at η = 0 is shown in Fig.4.

−|−⋄−−−−⋄−−⋄−−⋄−−⋄−−−−⋄−|−•−−−−•−−•−−•−−•−−−−•−|−
(Fig.4)

η = 0 .

Consider now what happens when η is shifted away from zero in the negative
direction. The theory is no longer integrable, the inelastic cuts appear, but just like
I said for the most part I’ll not pay them attention.

When η is shifted away from zero in the negative direction, the poles −iθ2 and
−iθ3 start moving to the left, towards the two-particle threshold −iθ = 0. The pole
−iθ1 = 2π/3 does not move - it corresponds to the particle A1 itself appearing as
the bound state in the s-channel, and it remains at this position

−iθ1(η) = 2π/3 , (10.17)

independent of the value of η.

The pole at −iθ3 = π/15, which is originally rather close to the threshold,
crosses the threshold at certain relatively small negative η,

−iθ3(η) = 0 at η = η3 ≈ −0.1371 , (10.18)

At this value of η the particle A3 leaves the spectrum. Its mass M3(η) however
can be analytically continued below this value, where it for awhile remains real.
Anyway, for η < η3 the spectrum of IFT contains only two particles, A1 and A2.
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The locations of the poles and zeros of S11(θ) at η slightly below η3 is shown in
Fig.5

−|−•−−−−⋄−⋄−−−−⋄−⋄−−−−•−|−⋄−−−−•−•−−−−•−•−−−−⋄−|−
(Fig.5)

η slightly below η3 .

When η further decreases, the pole −iθ2 continues to move to the left, ap-
proaching the pole −iθ̄1 = π/3. At the same time the zero at −iθ = iθ3 moves to
the right approaching the same pole −iθ̄1 = π/3. It is easy to see that this moving
pole and moving zero have to hit the pole −iθ̄1 simultaneously; otherwise the A1

pole −iθ1 would acquire wrong sign of the residue. The pole −iθ2 and the zero iθ3
hit the pole at −iθ̄1 at certain

η∗ ≈ −0.47822 (10.19)

At this point

−iθ2(η∗) = iθ3(η∗) = π/3 , (10.20)

i.e.

M2(η∗) = M3(η∗) =
√
3 M1(η∗) . (10.21)

In (10.21) of course M3(η) stands for the analytic continuation of the mass M3(η)
below η3. Again, the locations of the poles and zeros of S11(θ) at η slightly below
η∗ is shown in Fig.6

−|−−−⋄−−⋄−−•−−•−−⋄−−⋄−−−|−−−•−−•−−⋄−−⋄−−•−−•−−−|−
(Fig.6)

η slightly below η∗ .

Next event occurs at some

η∗∗ ≈ −0.513 (10.22)
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where the zeros at −iθ = iθ3 and −iθ = π − iθ3 collide at −iθ = iπ/2 and then
below η∗∗ become complex-conjugate pair in the complex plane of −iθ. Note that
at this point

M3(η∗∗) =
√
2 M1(η∗∗) . (10.23)

The poles and zeros of S11(θ) at η slightly below η∗∗ is shown in Fig.7

−|−−⋄−−−⋄−−−−−−−−⋄−−−⋄−−|−−•−−−•−−−−−−−−•−−−•−−|−
(Fig.7)

η slightly below η∗∗ .

When η further decreases the complex-conjugate zeros in the physical strip
depart further away from the real axis, while the pole −iθ = −iθ2 corresponding to
the particle A2 approaches the threshold −iθ = 0; it hits the threshold at η = η2,

η2 ≈ −2.09 , (10.24)

and at η < η2 only one particle remains in the spectrum of the IFT (but again,
analytic continuation of M2(η) exists and is real below η2.). The picture is in Fig.8

−|−•−−−−⋄−−−−−−−−⋄−−−−•−|−⋄−−−−•−−−−−−−−•−−−−⋄−|−
(Fig.8)

η slightly below η2 .

Finally, when η → −∞ the complex-conjugate zeros speed away to infinity,
and the zeros −iθ = iθ2 and −iθ = π − iθ2 approach the poles −iθ̄1 = π/3 and
−iθ1 = 2π/3, respectively, as in Fig.9

−|−−−−•−⋄−−−−−−−−⋄−•−−−−|−−−−⋄−•−−−−−−−−•−⋄−−−−|−
(Fig.9)
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η → −∞ ,

so that at η = −∞ all poles and zeros disappear and we have S11 = −1 as it
should be for free particles.

It is not difficult to estimate how fast the zero at −iθ = π − iθ2 approach the
pole at 2π/3 as η → −∞. When the zeros approach the poles, the residues at those
poles become small. These residues can be found using perturbation theory in h.

At h = 0 we have free particles A1 and S11 = −1. Recall that in the high-T
regime the operator σ always converts even number of particles to odd number, and
vice versa. Hence the first non-trivial contribution to the 2 → 2 elastic amplitude
appears in the order ∼ h2. We have by definition we have

out⟨A(θ′1)A(θ′2) | A(θ1)A(θ2) ⟩in = (2π)2 δ(θ1 − θ′1)δ(θ2 − θ′2)S11(θ1 − θ2) , (10.25)

where I have assumed that θ′1 ̸= θ2 and θ′2 ̸= θ1, so that the term with δ(θ′1 −
θ2)δ(θ

′
2 − θ1) is ignored. On the other hand, by usual perturbation theory

out⟨A(θ′1)A(θ′2) | A(θ1)A(θ2) ⟩in = −(2π)2 δ(θ1 − θ′1)δ(θ2 − θ′2) +M2→2 , (10.26)

with

M2→2 = −1

2
(2π)2 δ(2)(Pf − Pi)×

×h2

∫
out⟨A(θ′1)A(θ′2) | Tσ(x, t)σ(0, 0) | A(θ1)A(θ2) ⟩in dxdt , (10.27)

where all the matrix elements are from the unperturbed theory with h = 0. The
momentum delta-function came from the integration over overall space-time shifts.
Using

(2π)2 δ(2)(Pf − Pi) = (2π)2 δ(θ1 − θ′1)δ(θ2 − θ′2)
1

m2 sinh(θ1 − θ2)
(10.28)

we have

S11(θ) = −
(
1 +

iA(θ)

m2 sinh θ
+ ...

)
, (10.29)

where

A(θ1−θ2) = i h2

∫
t>0

in⟨A(θ1)A(θ2) | σ(x, t)σ(0, 0) | A(θ1)A(θ2) ⟩in dxdt . (10.30)
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The matrix element here can be expanded in terms of the intermediate states.
Obviously, the pole at θ1 − θ2 = 2πi/3 we are comes from the intermediate state
with one particle A(θ′), as in the diagram in Fig.10

We have

Apole(θ1 − θ2) =
i h2

m2

∫
2πi δ(sinh θ′ − sinh θ1 − sinh θ2)

cosh θ′ − cosh θ1 − cosh θ2
×

∣∣⟨A(θ′) | σ(0, 0) | A(θ1)A(θ2) ⟩∣∣2 dθ′

2π
. (10.31)

As usual, the spatial momentum delta-function and the energy denominator came
from the integrations over x and t, respectively.

The θ integration is eliminated by the delta-function. Since the residue we are
looking for is expected to be Lorentz-invariant, it is convenient to assume the center
of mass frame where θ1 = −θ2 = θ/2 (as before, θ = θ1 − θ2), and θ′ = 0 by the
delta-function. We find

Apole(θ) = − h2

m2

∣∣⟨A(0) | σ(0) | A(θ/2)A(−θ/2)⟩
∣∣2

1− 2 cosh θ/2
. (10.32)

As expected, this has a pole at θ = 2πi/3, and we find that at θ close to 2πi/3

S11(θ) →
4
3 Γ

2

θ − 2πi/3
as θ → 2πi/3 , (10.33)

where

Γ2 =
h2

m4

∣∣⟨A(0) | σ(0) | A(iπ/3)A(−iπ/3) ⟩
∣∣2 = 27

(
σ̄h

m2

)2

, (10.34)

where I have taken into account that in the high-T theory with h = 0

⟨A(0) | σ(0) | A(iπ/3)A(−iπ/3) ⟩ = 3
√
3 σ̄ . (10.35)
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From this we find that S11(θ) has zeros in the physical strip at θ = 2πi/3+ i∆
and θ = iπ/3− i∆ with

∆ = 9λ2 +O(λ4) , where again λ =
2σ̄ h

m2
. (10.36)

Let us say few words about inelastic processes. Generally at η ̸= 0 and η ̸= ±∞
the IFT is not integrable, and all kinds of inelastic processes are allowed. For
instance, at sufficiently large negative η, where only one particle A = A1 exists, one
can study the two-particle scattering which in general leads to the production of
any number of particles A. One can write 2

| A(θ1)A(θ2) ⟩in = S(θ1 − θ2) | A(θ1)A(θ2) ⟩out+

+

∞∑
n=3

∫
β1,...,βn

S(θ1, θ2|β1, . . . , βn) | A(β1) · · ·A(βn) ⟩out , (10.37)

where

S(θ1, θ2|β1, . . . , βn) = (2π)2 δ(2)(Pf − Pi)A(θ1, θ2|β1, · · · , βn) (10.38)

are the amplitudes of the 2 → n reactions. In (10.37) and below I use the short-hand
notation S(θ) = S11(θ).

If the center of mass energy E = ECOM of the incoming particles is less then
3M1, i.e.

E = 2M1 cosh
θ

2
< 3M1 ⇒ |θ| < Θ3 = 2 log

3 +
√
5

2
(10.39)

(where again θ = θ1 − θ2) all inelastic channels are closed, and it is simple conse-
quence of unitarity that S(θ) is pure phase factor,

|S(θ)|2 = 1 for real θ, such that |θ| < Θ3 . (10.40)

When |θ| exceeds the 2 → 3 threshold Θ3 this is no longer true. One can define the
total inelastic cross-section as

σ(θ) = 1− |S(θ)|2 . (10.41)

2 Here as usual we use the notation
∫
β1,...,βn

= 1
n!

∫
dβ1

2π · · · dβ1

2π .
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This quantity is the probability of production of n > 2 particles in the two-particle
collision. It can also be written as the sum of 2 → n particle terms, σ(θ) =

1

sinh(θ1 − θ2)

∞∑
n=3

∫
β1,...,βn

(2π)2 δ(2)(P (θ1, θ2)− P ({β})) |A(θ1, θ2|β1, . . . , βn)|2 .

(10.42)
Since σ(θ) is probability, we have

0 ≤ σ(θ) ≤ 1 for all real θ . (10.43)

Interesting open problem is the large-energy behavior of the cross-section σ(θ).
The answer is not obvious even in the weak-coupling domain of high-T with h <<
|m|15/8. It is possible to study the leading term λ2 σ(2)(θ) in the expansion

σ(θ) = h2 σ(2)(θ) +O(h4) . (10.44)

This term can be determined by using the leading term

A(θ1, θ2|β1, . . . , βn) = i h ⟨A(θ1)A(θ2) | σ(0) | A(β1) · · ·A(βn) ⟩+O(h2) (10.45)

in the equation (10.42). Then the term ∼ h2 in (10.42) is expressed through the
integrated matrix element∫

⟨A(θ1)A(θ2) | σ(x)σ(0) | A(θ1)A(θ2) ⟩irred d2x , (10.46)

where the connected one-particle irreducible matrix element is taken.

Although the matrix element in (10.46) can be written down explicitly in terms
of the functions Ψ±(x, θ). The integral (10.46) is complicated, but it is possible to
extract its leading high-energy behavior, which yields

σ(2)(θ) = 8G2 log
(
E2/m2

)
+O(1) as E → ∞ , (10.47)

where the coefficient in front of the log term is related to certain moment of the
two-point correlation function

G2 =
1

2π

∫
|z|2 G(|z|) d2z =

∫ ∞

0

r3 G(r) dr , (10.48)

where
G(r) = ⟨σ(r)σ(0) ⟩h=0,m<0 . (10.49)
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At sufficiently large E the h2 term h2 σ(2)(E) exceeds the unitarity bound
(10.43); hence the higher-order terms in h2 must become significant at large E.
True large E behavior of the inelastic cross-section σ(E) remains open question.
Obviously, there are three possibilities, i) σ(E) → 0, ii) σ(E) → 1 and iii) σ(E) →
σ∞; 0 < σ∞ < 1. Which of these possibilities is realized?

Among other interesting questions which appear in concern with the IFT as
the particle theory are:

What is the fate of the particles M4,M5,M6, ... etc after they disappear from
the spectrum (i.e. become heavier then 2M1)? General answer is that they likely
become resonance states, but we still may be interested in how their masses and
widths change with the parameter η.

What can be said about the scattering theory at η → +∞? Although at
η = +∞ is the free theory, the limit η → +∞ must be very subtle. Is there a
classical description of this theory, something like the classical description of the
meson spectrum at large positive η.

Many interesting questions appear when one considers analytic continuation of
the IFT to complex values of the scaling parameter η. Among those let me mention
just one related to the Yang-Lee critical point.

Consider the high-T domain m < 0, and let us consider the scaling parameter

ξ =
h

|m|15/8
(10.50)

as a complex variable. At this point we think of m as being real and negative,
therefore this is equivalent as taking the external magnetic field h as a complex
variable.

Analytic properties of the thermodynamic quantities of the Ising model, say
its free energy

F = − logZ/V , V → ∞ , (10.51)

as the function of complex H, are relatively well understood. It follows from the
theorem due to Yang and Lee that the free energy F (H) is analytic in both right
and left half-planes ℜeH > 0 and ℜeH < 0. In the hight-T domain T < Tc there
are singularities located at the imaginary axis. In the thermodynamic limit V = ∞
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we have two brunching points at

H = ±iHYL(T ) . (10.52)

These singularities appear as the result of accumulation of the Yang-Lee zeros of
Z, which leads to two branch cuts, from iHYL to +i∞, and from −iHYL to −i∞,
see Fig.11

−−−−−−−−−| − −−−−−−−− ℜeH (Fig.11)

As T approaches Tc from above the points HYL(T ) approach the real axis as

HYL(T ) ∼ (T − Tc)
15/8 , (10.53)

and at T = Tc they pinch the real axis leading to the critical singularity at H = 0,
T = Tc.

In the scaling domain T → Tc, H → 0 with

H/(T − Tc)
15/8 ∼ ξ = h/|m|15/8 fixed (10.54)

this means that the singular part of the free energy Fsing is analytic function of ξ
with two brunching points at pure imaginary ξ = ± i ξ∗, see Fig.12

−−−−−−−−−| − −−−−−−−− ℜe ξ (Fig.12)

Unlike the Fig.11 the positions ± i ξ∗ are not functions of any parameters but
are pure numbers,

ξ∗ = 0.1893... (10.55)
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The YL point(s) i ξ∗ is critical, in the sense that the mass of the lightest particle
M1(ξ), being analytically continued to complex ξ, vanish at ± i ξ∗,

M1(ξ = ± i ξ∗) = 0 , (10.56)

i.e. the correlation length Rc ∼ M−1
1 diverges at these points. As the result, all

thermodynamic quantities, including Rc(ξ), are singular at the Yang-Lee point(s).

The Yang-Lee criticality in 2D, i.e. the associated RG fixed point, is known to
be described by certain CFT, namely the

c = −22/5 minimal CFT (10.57)

which has two primary fields

I with ∆ = 0 , Φ−1/5 with ∆ = −1/5 . (10.58)

The character of the singularity at ± i ξ∗ can be predicted from these dimensions.
For instance, the mass M1(ξ) vanishes as

M1(ξ) ≃ b0 m
(
ξ2 + ξ∗)

2
)5/12

, (10.59)

The leading singularities at ξ2+ξ2∗ = 0 are described by the perturbed Yang-Lee
CFT,

AIR = Ac=−22/5 CFT + λ(ξ)

∫
Φ−1/5(x) d

2x , (10.60)

where λ vanishes at the YL points in a non-singular way,

λ(ξ) ≃ i a1 |m|12/5
(
ξ2 + ξ2∗

)
+O(δξ2) , a1 ≈ 3.1 (10.61)

The imaginary axis in the ξ plane corresponds to the ray

η = y e
4πi
15 (10.62)

in the η-plane. One can observe the behavior of M1 along this ray.

The picture in Fig.9, i.e.

−|−−−−•−⋄−−−−−−−−⋄−•−−−−|−−−−⋄−•−−−−−−−−•−⋄−−−−|−
(Fig.9)
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∆ ≃ 36 s̄2 ξ2 ξ2 → 0 .

can be further developed to the imaginary axis in the ξ-plane by taking negative
ξ2. For small negative ξ2 the zeros pass the poles,

−|−−−−−−⋄−•−−−−•−⋄−−−−−−|−−−−−−•−⋄−−−−⋄−•−−−−−−|−
(Fig.13)

ξ2 < 0 , y < −4.2

Note that in this situation the residue of the pole θ = 2πi/3 becomes negative,
making it manifest that the theory is no longer unitary.

When ξ increases along the imaginary axis, i.e. y increases from −∞, the zeros
approach each other and then collide, becoming after that a complex-conjugate pair,
as in Fig.14

−|−−−−−−⋄−−−−−−⋄−−−−−−|−−−−−−•−−−−−−•−−−−−−|−
(Fig.14)

ξ2 < 0 , y < −4.2

When ξ2 approaches −ξ2∗ the zeros depart to infinity, leaving behind the pattern
in Fig.15

−|−−−−−−⋄−−−−−−⋄−−−−−−|−−−−−−•−−−−−−•−−−−−−|−
(Fig.15)

ξ2 = −ξ2∗ , y = −2.4295...

This corresponds to known S-matrix of the integrable Yang-Lee theory (10.60)

SYL(θ) =
sinh θ + i sin(2π/3)

sinh θ − i sin(2π/3)
. (10.63)

At ξ2 + ξ2∗ the theory is massless
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