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Ising field theory (IFT) is continuous (or ”scaling”) limit of the 2D Ising model.
Its significance is that it describes the most basic universality class of 2D criticality.
It is also important model of 2D (or 1+1) quantum field theory (QFT), with rich
content of particles and interesting phenomena.

It is possible to define the IFT in intrinsically field-theoretic terms, without
reference to the lattice Ising model and its scaling limit. I will introduce such
formulation later. However, to understand the nature of local observables (such as
order and disorder parameters) it is useful to remember the lattice formulation as
well. Therefore I will start with reminding basic properties of the 2D Ising model.
This is familiar subject (see e.g. the monograph of Wu and McCoy), and I’ll be
brief.

+_ 1= σx

x

2D Ising model is a lattice model of classical statistical mechanics. In its
simplest version, it is formulated as follows. Consider (infinite) square lattice with
the lattice cites labelled by x = (n1, n2). The degrees of freedom are ”spins” σx,
associated with the cites, and taking two values,

σx = ±1 . (1.1)

1



The configuration space of the system thus is the collection {σx, x ∈ lattice} of all
these spins.

Statistical mechanics is defined by the Gibbs distribution

P{σx} = Z−1 exp

(
− 1

kT
E{σx}

)
,

where E{σx} is the energy functional, and Z is the partition function. The latter
is chosen to account for the nearest neighbor interactions only,

E{σx} = −J
∑

xy=nn

σxσy −B
∑
x

σx , (1.2)

where J and B are parameters. This can be regarded as a primitive ”ferromag-
net”. If J is positive (which I assume), the first term in E makes it energetically
favorable for the neighboring ”spins” to aline (i.e. take the same values), wile the
last term describes interaction with external field B. Since J and B enter only in
certain combinations with the temperature T , it is convenient to introduce shorter
notations:

P{σx} = Z−1 exp

(
K

∑
xy=nn

σxσy +H
∑
x

σx

)
, (1.3)

where K = J/kT , H = B/kT . The theory depends on two parameters, K and H.

Remark 1. Perhaps more useful interpretation of the model is in terms of the
”lattice gas”. Consider a gas of molecules which are hard but sticky - that means
the the interaction between two molecules has a ”hard core” (so that that they
cannot sit one on top of another) and it also has a short-range attraction, so that
the molecules like to sit close to each other. This is rather realistic interaction, and
on general grounds one could expect to observe liquid-gas phase transition in such
system. Of course, exact calculation of the partition sum is exceedingly difficult
problem for any potential, so one can start making simplifications. To simplify
things let us replace integrations over the coordinates of the molecules by discrete
sums, namely assume that possible positions of the molecules are restricted to the
cites x of 2D lattice. Having in mind the grand canonical ensemble, let us introduce
the ”occupation numbers” nx = 0, 1; it takes the value 0 at the empty cites and 1
at the cites occupied by the molecules. Obviously, the total number of molecules is

N =
∑
x

nx .

The ”sticky” nature of the interaction is captured by the following simple form of
the energy functional

E{nx} = −w
∑

xy=nn

nx ny
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which adds attraction energy w to any pair of molecules which sit next to each
other. It is not difficult to check that

E{nx} − µN

is equivalent to the energy functional (1.2) if one relates the variables

nx =
1

2

(
1− σx

)
. (1.4)

and impose proper relation between the energy w and µ here and the parameters
K and H in (1.2).

Kc

H

+M

−M
K

Qualitatively, thermodynamic properties of the Ising model (1.3) are well un-
derstood. In the (K,H) plane the system has a line of first-order phase transitions
which is located at H = 0 and extends from some finite Kc to +∞ (see Fig.1). The
magnetization

M = ⟨σx ⟩

is discontinuous across this line, i.e.

M(K > Kc,H = +0) = −M(K > Kc,H = −0) ̸= 0 .

(but M(K < Kc,H = 0) = 0). From the point of view of the lattice gas this is the
liquid-gas transition (see Eq.(1.4)). The transition line ends at the critical point
(K = Kc, H = 0). If we restrict attention to the case H = 0 (zero external field)
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the point K = Kc corresponds to the Curie point of the ferromagnet, the point
where spontaneous magnetization first appears at sufficiently low temperatures. In
terms of the variable K (or T ) it is the second order phase transition.

To make quantitative analysis, one would like to find the partition function

Z(K,H) =
∑
{σx}

exp

(
K

∑
xy=nn

σxσy +H
∑
x

σx

)
, (1.5)

and the correlation functions

⟨σx1 · · · σxn ⟩ =
∑
{σx}

σx1 · · · σxn P{σx} . (1.6)

The problem (for the partition function) was solved exactly by Onsager in the
case H = 0. The theory with H = 0 reduces to the problem of free fermions on
the lattice. I am not going to reproduce full solution of the lattice model here;
some version of the solution can be found in virtually any textbook on statistical
mechanics. My aim here will be to show how the free-fermion structure emerges,
and on the way to introduce important concept of the ”disorder parameter” (which
belongs to Kadanoff and Cheva).

So, let us restrict attention to the case of H = 0. It is instructive to take first a
quick look at the high- and low- temperature expansions of the partition function.

At high temperatures T we have K << 1 and it is meaningful to expand Z in
the powers of K. It is convenient to use the identity

eK σxσy = coshK

(
1 + σxσy tanhK

)
(1.7)

to write

Z(K,H = 0) = cosh2N K
∑
σx

∏
xy=nn

(
1 + σxσy tanhK

)
, (1.8)

where N is the total number of the lattice sites (N → ∞ for infinite lattice). Each
factor in (1.8) corresponds to certain link of the lattice. If K → 0 the first terms
in these factors dominate and Z reduces to the trivial factor 2N cosh2N K. The
high-temperature expansion in powers of

t = tanhK
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is obtained by taking the second term t σxσy from some of the factors (i.e. for
some of the lattice links) in (1.8). When the second term is taken, let us mark
the associated link by a bold line. The t-expansion then is expressed in terms
of graphs which are built from such bold links on the lattice. Since σ2

x = 1 and∑
σ=±1 σx = 0, the summation over σx exterminates all odd powers of σx at the

same cite x. Hence only even numbers, i.e. 0, 2 or 4, of the bold links can meet at
any lattice cite. The result is the sum of graphs which consist of continuous bold
lines on the lattice which are allowed to cross at the ”four-vertices”, the cites where
four of the bold links meet. The graphs are not necessarily connected, but each
graph brings contribution

tL (1.9)

to the ”renormalized” partition function Z/2N cosh2N K, where L is the total
length of the bold lines in the graph. Examples of such loops are shown in Fig.2.

The above analysis can be repeated for the case of the correlation functions
(1.6); the result is that each spin insertion σx generates the end-point for the bold
lines at the cite x, as is depicted in the Fig.3 in the case of the two-point function.

The bold lines in the graphs can be thought of the the Euclidean-space tra-
jectories of particles. At the first glance, these particles appear to be interacting
ones. Indeed, the vacuum trajectories (i.e. the trajectories with no endpoints) of
free particles are combinations of closed loops, with the important property that the
statistical weight of any combination of the loops is the product of the weights of the
individual loops, no matter if they intersect (or self-intersect) or not. This seems
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not to be the case for the Ising graphs - the ”four vertices” seem to represent non-
trivial interactions between the particles. Fortunately, the sum of the Ising graphs
can be transformed to the sum of non-interacting loops, at the price of giving some
of these loops negative statistical weights. As the result the theory reduces to the
free fermionic particles. I am not going to describe here combinatorics which leads
to this result (see e.g. Landau&Lifshitz book on Statistical mechanics). Instead,
later on I will derive equivalent result by different approach.

x~

x

Now consider the case of low temperature, i.e. K >> 1. When T is strictly
zero, there are two degenerate ground states of the energy functional (1.2) (with
H = 0), the one with all spins equal +1 and the one with all spins equal −1.

These two states have the same statistical weight
(
eK

)N
, but they have opposite

spontaneous magnetization M = ±1. Let us concentrate attention at the state with
all spins +1. If the temperature is small but not exactly zero (i.e. K is large but
not infinite) some contributions to the partition function come from configurations
with the majority of the spins equal to +1 but with some small fraction of the
spins being equal to −1, as illustrated in Fig.4. These configurations can be given
representations in terms of graphs if one introduces the ”dual” lattice. The dual
lattice is the lattice whose cites are the centers of the faces of the original lattice.
For the case of the square lattice (which we stick to) the dual lattice is also a square
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lattice, see Fig.4. The cites of the original lattice are the faces of the dual lattice
and vice versa. I will denote x̃ = (k1, k2) (with half-integer k) the cites of the dual
lattice. For any spin configuration {σx} on the original lattice, one can draw a graph
on the dual lattice by applying the following rule. Take any link of the dual lattice.
There are two neighboring cites x and y of the original lattice immediately at the
sides of this link. If the spins σx and σy have opposite signs, i.e. if σxσy = −1,
then mark this link bold. On the other hand, if σxσy = +1, then leave the link
blank. Thus all possible spin configurations of the original lattice generate graphs
on the dual lattice, and it is easy to see that these graphs are exactly of the same
type as the graphs we encountered in the high-temperature expansion. Namely,
only even number of bold links can meet at any cite x̃ of the dual lattice, and hence
the graphs consist of continuous bold lines with ”four vertices”. Moreover, given
spin configuration brings contribution

t̃L (1.10)

to the modified partition Z/eNK , where L is the length (i.e. the number of bold
links) of the associated graph, and

t̃ = e−2K . (1.11)

Indeed, each bold link separates opposite spins, so its statistical weight differs by
the factor (1.11) from the statistical weight of the empty link (representing parallel
neighboring spins.

++_ _

+

++

+

+

+

_

_
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We observe remarkable ”duality” of the Ising model: Its thermodynamic prop-
erties at low T are related to those at low T , namely

Z(K)

2N cosh2N K
=

Z(K̃)

eNK̃
,

where K̃ relates to K as
e−2K = tanh K̃ . (1.12)

Note that from (1.12) follows e−2K̃ = tanhK, so that the relation (1.12) is inversion.
Note also that (1.12) relates values ofK in the low-T regime to its values in the high-
T regime. Assuming that the critical point Kc is unique, it must satisfy Kc = K̃c,
i.e.

Kc =
1

2
log

(√
2 + 1

)
. (1.13)

The graphs appearing in the low-T expansion also can be viewed as the Eu-
clidean space-time histories of some particles. Although the graphs have the same
structures and the same weights (in terms of the ”dual” parameters, that is) as the
high-T graphs, the interpretations of the particles are quite different. While the
particles appearing in the high-T graphs can be called the spin particles (since the
particle can be emitted by a single σx insertion, the lines in the low-T graphs have
different relation to the spin configurations. The low-T graph lines separate do-
mains of the lattice which are ”filled” with the spins of the same sign - the ”drops”.
Therefore the particles represented by the lines in the low-T graphs are rather the
”kinks” separating degenerate vacua of the opposite magnetization. It is remarkable
that despite this very different interpretations the low-T and the high-T particles
have the same dynamical properties (they are free fermions, as we will see little
later).

Let me present more formal derivation of this duality relation, since it naturally
introduces important notion of the disorder parameter. Consider again the partition
function (with H = 0)

Z(K) =
∑
{σx}

eK
∑

nn
σxσy . (1.14)

The expression in the sum factorizes in terms of variables

gxy = σxσy . (1.15)

These variables are associated with the links (xy) of the lattice, so that there are
2N of them. The complication is that these variables are not all independent, they
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must satisfy the constraints (”zero curvature conditions”)∏
polygon

gxy = +1 ,

where the product involves gxy associated with all links of any polygon on the lattice
- this follows from the definition (1.15). Of course, all these constraints follow from
the elementary constraints, associated with elementary polygons - the lattice faces.
The latter are labelled by the cites of the dual lattice, so for every x̃ we have∏

around x̃

gxy = 1 for every x̃ . (1.16)

Then the summation in 91.14) can be performed over independent gxy if we also
insert the delta-symbol to enforce all the constraints (1.16),

∏
x̃

δ

( ∏
around x̃

gxy = 1

)
. (1.17)

Now, each delta-function in (1.17) can be written as the sum

δ

( ∏
around x̃

gxy = 1

)
=

1

2

∑
n=0,1

[ ∏
around x̃

gxy

]n
. (1.18)

Indeed, if the product is equal to +1, the two terms in the sum add up to 1, but
if the product equals −1 these two terms cancel each other. Since there are N
delta-functions in (1.17), we will need N additional summation variables nx̃, one
for each cite of the dual lattice.

With this we can write

Z(K) =
1

2N

∑
{gxy}

eK
∑

nn
gxy

∑
nx̃

[∏
x̃

gxy

]nx̃

. (1.19)

For fixed configuration of {nx̃} the expression (1.19) factorizes in terms of the
link variables g, i.e. the summation over {gxy} reduces to 2N identical sums∑

gxy=±1

eK gxy
[
gxy

]nx̃+nỹ = eK +
(
− 1

)nx̃+nỹ e−K , (1.20)
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where x̃ and ỹ are two cites of the dual lattice adjacent to the link (xy). this
expression can be brought to a nicer form if one introduces new variables µx̃ = ±1
instead of nx̃ = 0, 1,

nx̃ =
1

2

(
1− µx̃

)
. (1.21)

It is easy to check that (1.20) can be written as

eK +
(
− 1

) 1−µx̃
2 +

1−µỹ
2 e−K = eK + µx̃µỹ e−K . (1.22)

And it further transforms with the use of the dual parameter K̃ from (1.12) e−2K =
tanh K̃,

eK

cosh K̃
eK̃ µx̃µỹ . (1.23)

We finally obtain for (1.19)

Z(K) =
e2NK

2N cosh2N K̃

∑
{µx̃}

eK̃
∑

nn
µx̃µỹ . (1.24)

Thus the duality transformation can be understood as certain non-local change
of variables in the partition sum, which brings it to the sum over the dual variables
µx̃, while the energy functional takes the original Ising form with K replaced by K̃.
The variables µx̃ are usually called the ”disorder parameter”.

I would like to stress that the possibility to make this duality transformation
strongly depends on the global Z2 (spin reversal) symmetry of the theory with
H = 0. If this symmetry is broken, as in the case of non-zero H, the transformation
leads to theory involving special Z2 gauge fields, and the dual theory becomes much
more complicated. I will discuss some of related topics later on.

Exercise 1: Perform the duality transformation of the two-point correlation
function

⟨σx1 σx2 ⟩ = Z−1
∑
{σx}

σx1 σx2 P{σx} ,

i.e. express it as the sum over the dual variables {µx̃}.

To understand the nature of the disorder parameter, consider again the parti-
tion sum (1.14). Take arbitrary simple closed contour Γ̃ on the dual lattice. It splits
the original lattice into two parts, the part Λ which consists of the sites inside Γ,
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and the part Λ̄ composed of the cites outside Γ. Let us make in (1.14) the following
change of variables

σx → σx if x ∈ Λ̄ ,

σx → −σx if x ∈ Λ , (1.25)

The only terms in the energy functional affected by this transformation are those
corresponding to the links (xy) which cross the contour Γ; I will denote such links
by perhaps clumsy symbol

(xy)× Γ .

These terms change sign in the exponentials in (1.14). Thus we have

Z(K) ≡
∑
{σx}

P{σx} =
∑
{σx}

P{σx} T{σxσy; (xy)× Γ} , (1.26)

where the insertion T takes into account this change of the signs,

T{σxσy; (xy)× Γ} = e
−2K

∑
xy×Γ

σxσy . (1.27)

I will often abbreviate (1.27) as T{Γ}. The Eq.(1.26) shows that, as the consequence
of the global Z2 symmetry, insertion of T{Γ} with any closed Γ does not change
the partition sum. One can insert T{Γ} into more complicated correlation function
which involves also some σ insertions. One finds

⟨σx1 · · ·σxn T{Γ} ⟩ =
(
− 1

)nΓ ⟨σx1 · · ·σxn T{Γ} ⟩ , (1.28)

where nγ is the number of the σ insertions surrounded by Γ.

Now, consider some open contour Γx̃1,x̃2 on the dual lattice, with the end points
at x̃1 and x̃2. Define T{Γx̃1,x̃2} as in (1.27) with Γ replaced by Γx̃1,x̃2 . The above
analysis shows that the expectation value

⟨T{Γx̃1,x̃2} ⟩ = Z−1
∑
{σx}

P{σx} T{Γx̃1,x̃2} (1.29)

does not depend on the exact form of the contour Γx̃1,x̃2
, but only on the positions

of its end-points x̃1 and x̃1. In fact, as the result of the Exercise 1 shows, this
expectation value coincides with the two-point correlation function of the disorder
variables µx̃,

(1.29) = ⟨µx̃1 µx̃2 ⟩ ≡ Z−1
∑
{µx̃}

µx̃1 µx̃2 eK̃
∑

nn
µx̃µỹ . (1.30)
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For some further insight, consider expectation value of T together with some
σ insertions,

⟨σx1 · · ·σxn T{Γx̃1,x̃2} ⟩ = Z−1
∑
{σx}

P{σx} σx1 · · ·σxn T{Γx̃1,x̃2} (1.31)

This quantity does depend on the form of the contour Γ, but the dependence is
”weak”. The expectation value (1.31) does not change under deformations of Γ as
long as the contour does not cross any of the points x1, · · · ,xn, and it changes sign
when such crossing occurs. Another way of stating the same is to say that (1.31) is
not a single-valued but a double-valued function of the points x̃1, x̃2 and x1, · · · ,xn,
which change sign every time x̃1 or x̃2 goes around any of the points x1, · · · ,xn.
The expectation value (1.31) defines the mixed correlation function involving both
order and disorder parameters

(1.31) ≡ ⟨σx1 · · ·σxn µx̃1 µx̃2 ⟩ . (1.32)

This correlation function is double-valued function with the monodromy properties
described above.

The above construction admits straightforward generalization to include more
insertions of the disorder field. In fact, it is convenient to introduce contours (on
the dual lattice) Γx̃ ending at the cite x̃ of the dual lattice, with the other end
brought away to infinity. Although it usually does not much matter, we will assume
that the contour extends to the left horizontal infinity. We define

µx̃ = T{Γx̃} . (1.33)

This definition is understood in terms of the insertion in the sum over the lattice
spin configurations. This allows to define arbitrary mixed correlation functions

⟨σx1 · · · σxn µx̃1 · · · µx̃m ⟩ . (1.34)

In fact, this explicit construction is not very important it is seldom used in
practice. What is important is our observation about the monodromy properties of
the correlation functions (1.34). To recapitulate, the mixed correlation functions are
double-valued functions of the points xi and x̃k involved. They change sign when
any of the x̃k is brought around any of the points xi. It does not change when
any of xi is brought around any other xj , and the same is true for the x̃’s. This
property will be brought out to the continuous field theory arising in the scaling
limit of the Ising model.
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To finish our discussion of the duality transformation, let us consider somewhat
different model. Consider again the H = 0 Ising model, which i now choose to write
in terms of the disorder variables

P{µx̃} = Z−1 exp

(
K̃

∑
nn

µx̃µỹ

)
. (1.35)

The low-T domain of the original model correspond to small K̃ in (1.35). Recall
that the particles which appeared in the low-T expansions were interpreted as kinks
in terms of the order variables σ. In the form (1.35) the same particles appear as
the µ-particles, i.e. the insertion of µ emits the kink.

Note that the form (1.35) exhibits explicit ”dual” Z2 symmetry corresponding
to the sign reversal of all µ’s. This is a global symmetry, but we can make it local
by adding the Z2 ”gauge connections” Ax̃ỹ, where x̃ and ỹ are neighboring cites
of the dual lattice, i.e. the connections are associated with the links of the dual
lattice. If we replace

µx̃ µỹ → µx̃ Ax̃ỹ µỹ (1.36)

in (1.35), the theory acquires local Z2 gauge symmetry

µx̃ → ϵx̃ µx̃ , Ax̃ỹ → ϵx̃ Ax̃ỹ ϵỹ , (1.37)

where ϵx̃ = ±1 are the elements of Z2. By usual routine of the lattice gauge theory,
one can add the self-interaction term

G̃
∑
x

Fx (1.38)

for the gauge field A; here Fx is the ”field strength” (or the curvature of the con-
nection A),

Fx =
∏

around x

Ax̃ỹ , (1.39)

which itself is gauge invariant, and G̃ is the gauge coupling constant. We can now
define the ”gauge Ising model”

P{µx̃, Ax̃ỹ} = Z−1 exp

(
K̃

∑
nn

µx̃ Ax̃ỹ µỹ + G̃
∑
x

Fx

)
. (1.40)

The distribution function of course is defined on the orbits of the gauge group. We
can always fix the gauge by the condition

µx̃ = +1 . (1.41)
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Then the partition function takes the form of the sum

Z =
∑
{A}

exp

(
K̃

∑
links

Ax̃ỹ + G̃
∑
x

Fx

)
. (1.42)

Now we can make a duality transform along the same lines as were applied to the
usual Ising model.

x2

x 1

Γ x~1x2
~Γ

x2
~

x~1
∗

∗

(a) (b)
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