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Appendix A1 in ZLF

Variational Derivatives

Without giving strict justification, we shall explain here several simple
rules of calculating variational derivatives. They follow from the fact that
δ/δf(r) generalizes the notion of partial derivative ∂/∂f(rn) (rn is discrete)
for the case of continual number of variables.

1. The variational derivatives of linear functional of the form
I =

∫
φ(r′)f(r′) dr′ are calculated by the simple formula

δI

δf(r)
=

∫
φ(r′)

δf(r′)

δf(r)
dr′ =

∫
φ(r′)δ(r − r′) dr′ = φ(r) . (A1.1)

To obtain this formula, one can mentally substitute δ/δf(r) by ∂/∂f(rn),
simultaneously replacing integration by summation, and after differentiation,
return to continuous form of record:

δ

δf(r)

∫
φ(r′)f(r′) dr′ →

∂

∂f(rn)

∑
m

φ(rm)f(rm) = φ(rn) → φ(r) .

This result may be represented by a symbolic formula:

δf(r′)

δf(r)
= δ(r − r′) . (A1.2)

2. If the f function in the functional is affected by differential operators,
then, in order to make use of the rule (A1.2), one should at first “throw them
over” to the left, fulfilling integration by parts. For exaple,

δ

δf(r)

∫
φ∇f dr′ = −

δ

δf(r)

∫
f∇φ dr′ = −∇φ . (A1.3)

We assumed here that on the boundary of integration domain the product
f(r′)φ(r′) becomes zero.

The variational derivative of nonlinear functionals is calculated according
to the rule of differentiating a complex function similarly to partial deriva-
tives:

δ

δf(r)

∫
F [f(r′)] dr′ =

∫ δF

δf(r′)

δf(r′)

δf(r)
dr′ =

δF

δf(r)
.
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For example,
δ

δf(r)

∫
fn(r′) dr′ = nfn−1(r), etc . (A1.4)

3. Variation of multidimensional integrals over the function giving the
boundary of integration domain is not so trivial. Thus, in deriving the Hamil-
tonian description of waves on a fluid surface (see Sect. 1.2, ZLF ), one should
calculate the variational derivative δ/δη(r) of the following functional

J =
∫

~dr
∫ η(~r)

A[~r, z; η(r)] dz. (A1.5)

Here ~r = (x, y) is a two-dimensional vector, A[~r, z, η(~r)] depends not only on
spatial variables but also on the form of the η(~r) function. For example, a
boundary condition on A is given on the surface z = η(~r). With variation
η → η + δη, the J variation then consists of two terms

δJ =
∫

~dr′ A[~r′, z; η(~r′)]z=ηδη(~r′) +
∫

~dr′δA[~r′, z; η(r′)]z=η. (A1.6)

The first term is due to variation in the size of integration domain; the second
one, to variation of the integrand function, e.g. δA = A(z + δz) − A(z) =
δη∂A/∂z [see (1.2.33)].
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Appendix A2 in ZLF

Canonicity Condition of Transformations

1. Let aj(r, t), a∗

j(r, t) be the canonical variables, so that their equations
of motion have a canonical form (1.1.6). Let us introduce new variables
bl(r, t), b∗l (r, t) using the transformations which do not contain time in an
explicit form

bl = fl{aj, a
∗

j}, b∗l = f ∗

l {aj, a
∗

j}. (A2.1)

Here fi is a certain functional. Let us obtain the conditions under which the
equations of motion in the b, b∗ variables retain the form (1.1.6):

∂bl(r, t)

∂t
=

∑

j

∫

dr′
[

−i
δbl(r)

δaj(r′)

δH

δaj ∗ (r′)
+ i

δbl(r)

δa∗

j(r
′)

δH

δaj(r′)

]

,

δH

δaj(r′)
=

∑

m

∫

dr′′
[

δH

δbm(r′′)

δbm(r′′)

δaj(r′)
+

δH

δb∗m(r′′)

δb∗m(r′′)

δaj(r′)

]

,

i
∂bl

∂t
=

∑

j

∫

dr′
[

δH

δb∗m(r′)
{bl(r)b

∗

m(r′)}aa∗ +
δH

δbm(r′)
{bl(r)bm(r′)}aa∗

]

. (A2.2)

We have introduced here designations for the Poisson brackets

{f(r)g(r′)}aa∗ =
∑

m

∫

dr′′
[

δf(r)

δam(r′′)

δg(r′)

δa∗

m(r′′)
−

δf(r)

δa∗

m(r′′)

δg(r′)

δam(r′′)

]

. (A2.3)

For the equations (A2.2) to have a canonical form (1.1.6), the following
conditions should be satisfied

{bl, bj} = 0, {bl(r)b
∗

j(r
′)} = δljδ(r − r′) , (A2.4)

which are classical analogues of commutation equations for Bose operators.
The canonicity conditions for transformations of Fourier images b(k, t)

and b∗(k, t) have the same form. Thus, for the linear u − v transformation
(1.1.16) diagonalizing the quadratic part of the Hamiltonian

bj(k) =
∑

l

[ujl(k)al(k) + vjl(k)a∗

l (−k)],
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we obtain from (A2.4) the following canonicity conditions

∑

l

[ujl(k)u∗

ml(k) − vjl(k)v∗

ml(k)] = δjm,

∑

l

[ujl(k)vml(−k) − vjl(k)uml(−k)] = 0. (A2.5)

For quasi-linear transformations of the type

b(k) = a(k) +
∫

[A(k, k1, k2)a(k1)a(k2) + B(k, k1, k2)a
∗(k1)a(k2)

+C(k, k1, k2)a
∗(k1)a

∗(k2)] dk1dk2 ,

used in Sects. 1.1,2 to eliminate the nonresonance three-wave processes,
the canonicity conditions are also obtained using the Poisson brackets (A2.4)
with an accuracy to next order terms and have the form [see also next Ap-
pendix to Lecture ]:

B(k, k1, k2) = B(k1, k, k2) = −2A∗(k2, k1, k) ,

C(k, k1, k2) = C(k1, k, k2) = C(k, k2, k1) . (A2.6)

2. The canonical transformations may be formulated in terms of generat-
ing functionals, which are the continual analogues of the generating functions
of finite-dimensionality systems. As known, the Hamilton equations of mo-
tion may be obtained from the extremum action principle represented in the
form

δ

∫

dt

[

∫

p(r, t)
∂q(r, t)

∂t
dr −H{p, q}

]

= 0. (A2.7)

In this equation, all coordinates and momenta should be independently var-
ied. For the equation in new variables P and Q also to have a canonical
form, a similar principle should be satisfied

δ

∫

dt

[

∫

P (r, t)
∂Q(r, t)

∂t
dr −H{P,Q}

]

= 0. (A2.8)

These two principles will be equivalent on condition that the sub-integrands
differ by a total variation (analog of total differential) of the arbitrary func-
tional Φ of coordinates, momenta and time

δΦ =
∫

p(r)δq(r) dr −
∫

P (r)δQ(r) dr + (H′ −H)dt. (A2.9)
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Hence we obtain the equations

p =
δΦ

δq
, P = −

δΦ

δQ
, H′ = H +

∂Φ

∂t
, (A2.10)

specifying the relation (at a given Φ{q,Q, t}) between the old and new vari-
ables, and the new Hamiltonian.

In Sect. 1.2.4, we needed the generating functional in the Q, p variables.
To derive the transformation formulas in this case, one should fulfil in (A2.9)
the Legendre transformation

δ

(

Φ +
∫

q(r)p(r) dr

)

=
∫

q(r)δp(r) dr

−
∫

P (r)δQ(r) dr + (H′ −H) dt . (A2.11)

The new generating functional is thus equal to F (p,Q, t) = Φ + pq, and

q =
δF

δp
, P = −

δF

δQ
, H′ = H +

∂F

∂t
. (A2.12)

It should be noted that usually it is exactly satisfiability of the condition
(A2.9) or (A2.11) that is adopted as a definition of the canonicity of the
(p, q) → (P,Q) transformation. Though the canonical form of equations of
motion is retained by transformations of a wider class, for example, those in
which the Hamiltonian is multiplied off by an arbitrary constant.
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Appendix A3 in ZLF

Elimination of Non-resonant Terms from
the Interaction Hamiltonian

We shall show here how one can make in the nondecay case a transforma-
tion eliminating three-wave and nonresonant four-wave processes from the
interaction Hamiltonian. Let us seek the transformation as a power series.
Since expansion of the Hamiltonian starts with a quadratic term and ends
(for us) with fourth-order terms, the transformation should contain linear,
quadratic and cubic terms.

Let us demonstrate a simple method for computing the coefficients of a
power series transformation, which is canonical due to its derivation. That
method is based on the fact that a hamiltonian system possesses hamiltonian
properties at any time. Therefore, the transformation c(k, 0) → c(k, t) is
canonical. Let us consider an auxiliary Hamiltonian in the standard form
(1.1.24)

H̃ =
1

2

∫
δ(~k1 − ~k2 − ~k3)(Ṽ123c

∗
1c2c3 + c.c.) d~k1d~k2d~k3

+
1

6

∫
δ(~k1 + ~k2 + ~k3)(Ũ123c

∗
1c
∗
2c
∗
3 + c.c) d~k1d~k2d~k3

+
1

4

∫
δ(~k1 + ~k2 − ~k3 − ~k4)W̃1234c

∗
1c
∗
2c3c4 d~k1d~k2d~k3d~k4

+
∫

δ(~k1 − ~k2 − ~k3 − ~k4)(G̃1234c1c
∗
2c
∗
3c
∗
4 + c.c.) d~k1d~k2d~k3d~k4

+
∫

δ(~k1 + ~k2 + ~k3 + ~k4)(R̃1234c
∗
1c
∗
2c
∗
3c
∗
4 + c.c.) d~k1d~k2d~k3d~k4. (A3.1)

Here c.c. means complex conjugation.
We can express old variables b(k, t) = c(k, t) in terms of c(k, 0) using a

Taylor series as follows

b(k, t) = c(k, 0) + t

(
∂c(k, t)

∂t

)

t=0

+
t2

2

(
∂2c(k, t)

∂t2

)

t=0

+ . . . . (A3.2)
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According to (A3.1):
(

∂c(k, t)

∂t

)

t=0

= −i
δH{c(k, 0), c∗(k, 0)}

δc∗(k, 0)
,

(
∂2c(k, t)

∂t2

)

t=0

= −i
∂

∂t

δH
δc∗

. (A3.3)

Substituting for ∂c/∂t and ∂2c/∂t2 and setting, for example, t = 1 (other
choice of t just corresponds to the redefinition of transformation coefficients)
we get a general view of the canonical transformations in the form of a power
series:

b(k) = c(k)− i

2

∫
[Ṽk12δ(~k − ~k1 − ~k2)c1c2

+2Ṽ ∗
1k2δ(

~k1 − ~k − ~k2)c1c
∗
2 + Ũk12δ(~k + ~k1 + ~k2)c

∗
1c
∗
2] d

~k1d~k2

+
∫ [

δ(~k − ~k1 − ~k2 − ~k3)c1c2c3(−G̃∗
k123 −

1

4
Ṽk1k−1Ṽ2+323

+
1

4
Ṽ ∗

1k1−kŨ−2−323) + δ(~k + ~k1 + ~k2 − ~k3)c
∗
1c
∗
2c3(−3iG̃3k12

+
1

4
Ṽk3k−3Ũ−2−121 +

1

4
Ṽ ∗

3k3−kṼ
∗
2+323 −

1

2
Ṽ ∗

323−2Ṽ
∗
1k1−k

+
1

2
Ṽ131−3Ũ−k−2k2) + δ(~k + ~k1 − ~k2 − ~k3)c

∗
1c2c3(− i

2
W̃k123

−1

2
Ṽk2k−2Ṽ

∗
313−1 −

1

4
Ṽ ∗

1+k1kṼ2+323 +
1

2
Ṽ131−3Ṽ

∗
2k2−k

+
1

2
Ũ−k−1k1Ũ−2−323) + δ(~k + ~k1 + ~k2 + ~k3)c

∗
1c
∗
2c
∗
3(−4iR̃k123

−1

4
Ṽ ∗

1+k1kŨ−2−323 +
1

4
Ṽ ∗

2+323Ũ−k−1k1)
]
d~k1d~k2d~k3 . (A3.4)

Here and below we use shorthand notation to replace the kj arguments by
the j indices.

As one cal see, that transformation consists of seven different terms but
it contains only five arbitrary functions:

Ṽ (k, k1, k2), Ũ(k, k1, k2), G̃(k, k1, k2, k3), R̃(k, k1, k2, k3) , W̃ (k, k1, k2, k3) .

In addition, those functions have to satisfy the usual symmetry conditions
(1.1.25) for Hamiltonian coefficients. Canonicity conditions (A2.6) is satisfied
identically.



3

Let us now substitute (A3.4) into the Hamiltonian (1.1.24). The resulting
Hamiltonian will have the same form (1.1.24) but with some new coefficients.
Demanding the coefficients of the cubic terms to be equal to zero, we obtain

iṼk12 =
Vk12

ωk − ω1 − ω2

, iŨk12 = − Uk12

2(ωk + ω1 + ω2)
. (A3.5)

They are exactly the coefficients (2A1 = −iṼ , A3 = −iŨ) given in (1.1.28b)
for the case ωk = ω1 = ω2 = ω3 = ω.

The fact that the fourth-order terms with c1c2c3ck and c∗kc1c2c3 are equal
to zero allows one to obtain another two transformation coefficients. After
proper symmetrization, we find

iR̃k123 =
Rk123 + i

24
(U−k−ikiṼj+ljl + Vk+ikiŨ−j−ljl)

ωk + ω1 + ω2 + ω3

+
1

48
(Ṽj+ljlŨ−k−iki − Ṽk+ikiŨ−j−ljl),

iG̃k123 =
Gk123 + i

6
(Vkik−iṼj+ljl + Viki−kŨ−l−jlj)

ωk − ω1 − ω2 − ω3

+
1

12
(Ṽ ∗

iki−kŨljl−j − Ṽkik−iṼl+jlj) . (A3.6)

Here summation over the divergent values of i, j, l indices running over the
numbers 1, 2, 3 is implied.

Thus, since the denominators in (A3.5–6) don’t turn into zero, then re-
spective terms may be excluded from the Hamiltonian and correspondent
transformation coefficients may be obtained. The rest of the interaction
Hamiltonian has the following form in the new variables

Hint = H4 =
1

4

∫
δ(~k1 + ~k2 − ~k3 − ~k4)c

∗
1c
∗
2c3c4[W1234 + T1234

+(ω1 + ω2 − ω3 − ω4)(iW̃1234 +
1

4
Ṽ ∗

pip−iṼjqj−q

−1

4
Ṽ ∗

qjq−jṼipi−p)] d~k1d~k2d~k3d~k4 , (A3.7)

where

2T1234 = −U−3−434U−1−212

ω3 + ω4 + ω3+4

− U−3−434U−1−212

ω1 + ω2 + ω1+2
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− V ∗
1+212V3+434

ω1+2 − ω1 − ω2

− V ∗
1+212V3+434

ω3+4 − ω3 − ω4

− V ∗
ipi−pVqjq−j

ωq−j + ωj − ωq

and indices i, j run over the (divergent) numbers 1, 2, indices p, q over the
3, 4. The renormalized interaction coefficient satisfies the same symmetry
conditions (1.1.25) as W1234 and W̃1234.

Since we always can find such ~k1, . . . , ~k4 that

~k1 + ~k2 = ~k3 + ~k4 and ω1 + ω2 = ω3 + ω4, (A3.8)

then it is impossible to eliminate the term (A3.7) in all ~k-space. That Hamil-
tonian describes scattering processes allowed for all wave systems.

For consideration of weak turbulence of wave interaction with wave vec-
tors lying only on the resonance surface (A3.8) [where (A3.7) coincides with
(1.1.29)], the formula (1.1.29b) is sufficient. But if essentially nonlinear phe-
nomena are discussed (for example, when using truncated equations for de-
scription of water waves [A.1]), the use of (1.1.29b) at ω1+ω2 6= ω3+ω4 leads
to the loss of energy in the equations and other errors [A.2]. The arbitrary
W̃ function may be chosen from considerations of convenience, one must sat-
isfy only the symmetry conditions (1.1.25). By varying W̃ we simultaneously
vary ck, leaving bk constant.




















