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Overview

I WGN is non-compressible.

I However WGN realizations do have sparse representations

I Unresolved questions:

I What is the minimal Hamming weight of WGN sparse
representations?

I What are the achievable and converse regions of WGN sparse
representation?

I What is the probabilistic pro�le of such representations?

I These fundamental questions are answered in this work via the
Replica method, leading to:

I Sharp threshold for `0-norm decoding in noisy compressed
sensing (viz. underdetermined Gaussian vector channels)

I and its mean-square error performance
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De�nitions

I Let w ∈ Rm be a WGN vector with i.i.d. wi ∼ N (0, 1),
i = 1, . . . ,m

I Choose an overcomplete dictionary D ∈ Rm×n, m ≤ n, with
zero-mean, unit-variance, i.i.d. Dij , j = 1, . . . , n

I e.g. Gaussian Dij ∼ N (0, 1), Bernoulli Dij = ±1

I w and D are statistically independent

I The realizations of the WGN, w, and dictionary, D, are
denoted by ω and D, respectively.
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De�nitions

I Let z(ω,D) ∈ Rn be a representation of a WGN vector via a
dictionary, namely

ω =
1√
n
Dz

I zk(ω,D) is termed k-sparse representation if at most k ≤ n of
its entries are non-zero
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Example: (κ = 1)-sparse (dense) representation

I For example:
zn ∼ N (0, I)⇒ w ∼ N (0,DDT/n)

m,n→∞−−−−−→
α∈(0,1)

N (0, I)
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Another example: (κ = α)-sparse representation

I Trivially, one can also represent (almost surely) the WGN
vector using only m out of n entries



Motivation

I But can we go below this trivial sparsity?
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Motivation

I Intriguingly the answer is yes: as we shall see, there are sparser
representations of WGN with some interesting characteristics



Problem formulation

I What is the normalized Hamming weight (sparsity fraction)
κ∗α(ω,D) of the sparsest representation of WGN based on an
α-measurement dictionary in the limit of large systems?

zκ∗α(ω,D) = argmin ‖z‖0 subject to ω =
1√
n
Dz

where ‖z‖0 , #{i ∈ {1, . . . , n} | zi 6= 0}
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Problem reformulation

I What is the normalized Hamming weight (sparsity fraction) κ∗α
of the sparsest representation of WGN based on an
α-measurement dictionary in the limit of large systems?

zκ∗α(ω,D) = argmin ‖z‖0 subject to ω =
1√
n
Dz

Assumption (Self-averaging property)

The limit κ∗α , limn→∞ κ
∗
α(ω,D) exists and it is equal to its

average over the randomness of the WGN and dictionary,

limn→∞ Ew,D{κ∗α(ω,D)}, for almost all realizations of the WGN

and dictionary.
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Proposition (Sparsest representation of WGN)

Consider the scalars α ∈ (0, 1) and κ∗α , 2Q(ξ) ∈ (0, 1), where
ξ ≥ 0 is determined by

α =

√
2

π

∫ ∞
ξ

t2 exp (−t2/2)dt,

and Q(ξ) ,
∫∞
ξ dt/

√
2π exp (−t2/2) is the Q-function.

Then, with probability 1 in the large-system limit, for a dictionary

D with measurement ratio α :

i) minimal Hamming weight: the sparsest WGN representation is

κ∗α-sparse;

ii) achievable region: κ-sparse representation of WGN exists only

for κ ≥ κ∗α;

iii) converse region: κ-sparse representation of WGN does not

exist for κ < κ∗α.



Sparsest representation of WGN

I Proof is based on the Replica method from statistical
mechanics (Replica-symmetric ansatz)

I Replica method is mathematically non-rigorous, but shown to
be very powerful tool



Achieving distribution of WGN sparse representation

I What is the probability density function of the WGN κ-sparse
representation via α-measurement dictionary?



Achieving distribution of WGN sparse representation

Proposition

The marginal probability density function of the j 'th (non-zero)

entry, ζj , of the (minimal `2-norm) κ-sparse representation of

WGN, zκ, is given in the large-system limit by

p(ζj) =

 0 if |ζj | < ξ
√

α
α∗
κ(α∗

κ−α)√
α∗
κ(α∗

κ−α)
2πακ2

exp
(
− ζ2

j
α∗
κ(α∗

κ−α)

2α

)
otherwise

,

where α∗κ is the achievability threshold for given sparsity fraction κ.

I Proof is also based on Replica analysis



Achieving distribution of WGN sparse representation

Proposition

The marginal probability density function of the j 'th (non-zero)

entry, ζj , of the (minimal `2-norm) κ-sparse representation of

WGN, zκ, is given in the large-system limit by

p(ζj) =

 0 if |ζj | < ξ
√

α
α∗
κ(α∗

κ−α)√
α∗
κ(α∗

κ−α)
2πακ2

exp
(
− ζ2

j
α∗
κ(α∗

κ−α)

2α

)
otherwise

,

where α∗κ is the achievability threshold for given sparsity fraction κ.

I Proof is also based on Replica analysis



Example: sparsity fraction κ = 0.1
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I α→ α∗ ⇒ The gap increases to in�nity and the non-vanishing
part (Gaussian tail) of the distribution becomes more uniform

I The marginal probability is symmetric
I In the large-system limit, the achieving distribution is not a

function of the WGN and Gaussian dictionary realizations
I There is an in�nite number of sparse representations per

(κ, α)-point in the achievable region
I The stated achieving distribution corresponds to the minimal
`2-norm representation

I What is the pairwise/joint distribution of ζ? interesting (yet
challenging) open question
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Experimental study: setup

I Generate WGN vector w=randn(m,1) and Gaussian dictionary
D=randn(m,n)

I Estimate the sparsest representation per w and D realization
using the iteratively reweighted least-squares (IRLS) method,
which is an approximation of `0-norm minimization

I Average over realizations
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Experimental study: results

I Quadratic curve �tting is used to extrapolate threshold for
n→∞

I For example:



Experimental study: results

I Fairly good agreement

I Mismatch due to extrapolation errors and IRLS approximation
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Experimental study: results

I Re�ects the generated noise is approximately Gaussian (does
not say anything about it being white)

I Mismatch is mainly due to the inaccurate assumption that the
non-zero entries of the sparse representation, zi , are i.i.d.



So what we have learned so far?

I The minimal Hamming weight of sparse representation of
WGN

I The marginal distribution of such sparse representations
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Noiseless compressed sensing

I Let xk be a k-sparse n-length vector

I Underdetermined linear transformation Dxk is observed

I Reconstruction with `0-norm

x̂ = argmin ‖x‖0 subject to Dxk = Dx
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Noiseless compressed sensing
I Prefect reconstruction x̂ = xk is possible with probability 1 if

I m ≥ k + 1 for almost any xk (weak achievable region)
I m ≥ 2k for any xk (strong achievable region)

I Reconstruction is impossible with overwhelming probability for
m ≤ k (strong converse region)
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`0-norm optimization complexity

x̂ = argmin ‖x‖0 subject to Dxk = Dx

I Prohibitively complex optimization problem
I NP-complete: requires combinatorial enumeration of the

(
n
k

)
possible sparse vectors

I Still of theoretical importance and may lead to practical
consequences and insights (e.g. , bounds performance of
tractable reconstruction methods, like `1 − norm optimization)
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The CS "wonder"

I Reconstruction with `1-norm

x̂ = argmin ‖x‖1 subject to Dxk = Dx

where ‖x‖1 ,
∑

i |xi |
I Prefect reconstruction x̂ = xk is possible with probability 1 at

the cost of more required measurements w.r.t. `0-norm
minimization

I However the `1-norm optimization problem is tractable with
polynomial complexity

I We do not address `1-norm optimization in this talk
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Noisy compressed sensing

I Underdetermined (overloaded) Gaussian vector channel

y =

√
snr

m
Dx + w

I Input x is κx -sparse

I E{x2i } is �nite
I Examples of overloaded Gaussian channels:

D m n

CDMA spreading matrix processing gain users

MIMO fading channel rx. antennas tx. antennas
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Noisy compressed sensing via WGN sparse representation

I Let zk∗α ∈ Rn be a k∗α-sparsest WGN representation

I Thus for the dictionary/channel D

y =

√
snr

m
Dx + w =

√
1

m
D(
√
snrx +

√
αzk∗α) =

√
1

m
Dx∗

I x∗ is the sparsest representation of the observations y w.r.t.
the dictionary/channel D



Noisy compressed sensing via WGN sparse representation

I Let zk∗α ∈ Rn be a k∗α-sparsest WGN representation

I Thus for the dictionary/channel D

y =

√
snr

m
Dx + w =

√
1

m
D(
√
snrx +

√
αzk∗α) =

√
1

m
Dx∗

I x∗ is the sparsest representation of the observations y w.r.t.
the dictionary/channel D



Noisy compressed sensing via WGN sparse representation

I Let zk∗α ∈ Rn be a k∗α-sparsest WGN representation

I Thus for the dictionary/channel D

y =

√
snr

m
Dx + w =

√
1

m
D(
√
snrx +

√
αzk∗α) =

√
1

m
Dx∗

I x∗ is the sparsest representation of the observations y w.r.t.
the dictionary/channel D



From noisy to "noiseless" channel

I The noisy channel with κx -sparse input is translated into a
noiseless channel with (κx + κ∗α − κxκ∗α)-sparse input



`0-norm decoding of Gaussian vector channel

I `0-norm decoding is feasible as long as

κ∗α + κx − κ∗ακx ≤ α

⇒ κx ≤ α− κ∗α
1− κ∗α
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`0-norm decoding of Gaussian vector channel
I The support Ω0 of x∗ is now known, thus the problem is

well-posed and one could reconstruct x with Least-Squares
method

x̂LS =

{ √
m
snr

(DT
Ω0
DΩ0

)−1DT
Ω0
y on Ω0

0 elsewhere

Proposition

Given a Gaussian vector channel with measurement ratio α ∈ (0, 1)
and arbitrary snr > 0, then in the large-system limit an `0-norm
decoder results, with probability 1, in average mean-square error

(MSE) per unknown

1

n
‖x̂− x‖22 =

κx + κ∗α − κxκ∗α
snr

,

as long as

κx ≤
α− κ∗α
1− κ∗α

for almost any x. Otherwise `0-reconstruction is impossible with

overwhelming probability.
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`0-norm vs. oracle decoder

I In the absence of any other (prior) information, reconstruction
with MSE proportional to the noise level, as happens for
`0-norm decoding, is the best one can hope for

MSE`0 =
κx + κ∗ − κxκ∗

snr
≥ κx

snr
= MSEoracle



Universality

I For any orthonormal basis matrix Ψ (e.g. , DFT matrix) and a
Gaussian dictionary D, the matrix DΨ will be also a Gaussian
dictionary



Take-home message

I Introducing achievable and converse regions for sparse
representation of WGN via Replica method

I The marginal distribution of such sparse representations is
derived

I Introducing sharp threshold for `0-norm decoding in noisy
compressed sensing

I The MSE of `0-norm decoder in underdetermined Gaussian
vector channels is

κx + κ∗α − κxκ∗α
snr

I Other applications (in, e.g. , data hiding, cryptography,...)?
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I Questions?

I E-mail: oshental@qualcomm.com

THANK YOU!
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