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WGN is non-compressible.

v

However WGN realizations do have sparse representations

v

Unresolved questions:
» What is the minimal Hamming weight of WGN sparse
representations?
» What are the achievable and converse regions of WGN sparse
representation?
» What is the probabilistic profile of such representations?

v

These fundamental questions are answered in this work via the
Replica method, leading to:

» Sharp threshold for £yp-norm decoding in noisy compressed

sensing (viz. underdetermined Gaussian vector channels)
» and its mean-square error performance
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Definitions
» Let w € R™ be a WGN vector with i.i.d. w; ~ N(0,1),
i=1,...,m

» Choose an overcomplete dictionary D € R™*" m < n, with
zero-mean, unit-variance, i.i.d. Dj, j=1,...,n

» e.g. Gaussian Djj ~ N(0,1), Bernoulli Djj = +1

» w and D are statistically independent

» The realizations of the WGN, w, and dictionary, D, are
denoted by w and D, respectively.
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Definitions

» Let z(w, D) € R" be a representation of a WGN vector via a
dictionary, namely
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Definitions

» Let z(w, D) € R" be a representation of a WGN vector via a
dictionary, namely

1
w=—Dz
vn
» z,(w, D) is termed k-sparse representation if at most k < n of
its entries are non-zero

g
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Our analysis assumes:

» mn k — oo

» Measurement ratio a = m/n € (0,1)
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Large-system limit

Our analysis assumes:
» mn k — oo
» Measurement ratio o = m/n € (0,1)

» Sparsity fraction x = k/n € (0,1)

mx1

nx1
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Example: (k = 1)-sparse (dense) representation

DA/n

mx1
measurements

Zn

nx1 vector

dictionary

» For example:

zn ~ N(0,1) = w ~ N(0,DD7 /n) =222 A/(0,1)

«€g(0,1)

[m]

=



Another example: (k = «)-sparse representation

» Trivially, one can also represent (almost surely) the WGN
vector using only m out of n entries

w D/./»
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non-zero entries
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» But can we go below this trivial sparsity?
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Motivation

» Intriguingly the answer is yes: as we shall see, there are sparser
representations of WGN with some interesting characteristics

measurements H

nx1
sparse vector

k<m
non-zero entries

mxn
dictionary
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Problem formulation
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» What is the normalized Hamming weight (sparsity fraction)

K} (w, D) of the sparsest representation of WGN based on an

«
a-measurement dictionary in the limit of large systems?

z,: (w,D) = argmin|z|o subjectto w = —=Dz

-

where ||z|]jo £ #{i € {1,...,n} | zi # 0}



Problem reformulation

» What is the normalized Hamming weight (sparsity fraction) %
of the sparsest representation of WGN based on an
a-measurement dictionary in the limit of large systems?

z,: (w,D) = argmin|z|o subjectto w = —=Dz

Si-



Problem reformulation

» What is the normalized Hamming weight (sparsity fraction) %
of the sparsest representation of WGN based on an
a-measurement dictionary in the limit of large systems?

z,: (w,D) = argmin|z|o subjectto w = —=Dz

Si-

Assumption (Self-averaging property)

The limit k%, £ lim, o0 k7 (w, D) exists and it is equal to its
average over the randomness of the WGN and dictionary,
limp— o0 Ew p{r}(w, D)}, for almost all realizations of the WGN
and dictionary.
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Proposition (Sparsest representation of WGN)

Consider the scalars a € (0,1) and k, £ 29(¢) € (0,1), where
& > 0 is determined by

a—\/E/ t? exp (—t2/2)dt,
T Je

and Q(&) = f;o dt/\/2m exp (—t2/2) is the Q-function.
Then, with probability 1 in the large-system limit, for a dictionary
D with measurement ratio « :
i) minimal Hamming weight: the sparsest WGN representation is
Ky,-sparse;
i) achievable region: k-sparse representation of WGN exists only
for k > K},

iil) converse region: k-sparse representation of WGN does not
exist for k < K.



Sparsest representation of WGN

» Proof is based on the Replica method from statistical
mechanics (Replica-symmetric ansatz)

» Replica method is mathematically non-rigorous, but shown to
be very powerful tool



Achieving distribution of WGN sparse representation

» What is the probability density function of the WGN k-sparse
representation via a-measurement dictionary?



Achieving distribution of WGN sparse representation

Proposition

The marginal probability density function of the j'th (non-zero)
entry, (j, of the (minimal {3-norm) k-sparse representation of
WGN, z,, is given in the large-system limit by

0 iflG] < f\/m
* * 2% CM —Q
o (o —av) exp ( . GFak( )

2rak? 2a

p(G) =

)

) otherwise

where . is the achievability threshold for given sparsity fraction k.



Achieving distribution of WGN sparse representation

Proposition

The marginal probability density function of the j'th (non-zero)
entry, (j, of the (minimal {3-norm) k-sparse representation of
WGN, z,, is given in the large-system limit by

0 iflG] < f\/m
* * 2% CM —Q
o (o —av) exp ( . GFak( )

2rak? 2a

p(G) =

)

) otherwise

where . is the achievability threshold for given sparsity fraction k.

» Proof is also based on Replica analysis



Example: sparsity fraction k = 0.1
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Example: sparsity fraction k = 0.1

1 a=0.3

o 1 2 3 4 5 6 7 8 9 10
]

» o — o = The gap increases to infinity and the non-vanishing

part (Gaussian tail) of the distribution becomes more uniform
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Example: sparsity fraction kK = 0.1

» o — o = The gap increases to infinity and the non-vanishing
part (Gaussian tail) of the distribution becomes more uniform

» The marginal probability is symmetric

» In the large-system limit, the achieving distribution is not a
function of the WGN and Gaussian dictionary realizations

» There is an infinite number of sparse representations per
(K, a)-point in the achievable region

» The stated achieving distribution corresponds to the minimal
f3-norm representation

» What is the pairwise/joint distribution of (7 interesting (yet
challenging) open question
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Experimental study: setup

» Generate WGN vector w=randn(m,1) and Gaussian dictionary
D=randn(m,n)

» Estimate the sparsest representation per w and D realization
using the iteratively reweighted least-squares (IRLS) method,
which is an approximation of £g-norm minimization

» Average over realizations



Experimental study: results

» Quadratic curve fitting is used to extrapolate threshold for
n— oo

» For example:

0.14,

0.135( ; a

0.11- i
0.105 O simulated
@ extrapolated
0.1 i i : m theoretical
’ 0.005 0.01 0.015 0.02 0.025

1/n



Experimental study: results
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» Generate Gaussian dictionary D=randn(m,n)

» Generate sparse representation z according to the Proposition
(non-zero entry locations are chosen uniformly)

_ 1
» Generate w = ﬁDz



Experimental study: setup

» Generate Gaussian dictionary D=randn(m,n)
» Generate sparse representation z according to the Proposition
(non-zero entry locations are chosen uniformly)
- L
» Generate w = ﬁDz
» Build histogram for w



Experimental study: results

o
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1N
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x=0.1

o
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Histogram of generated noise p(w;)
o o
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T F

o
o
<

2 L 1 L
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Standard normal dist. N(0,1)

» Reflects the generated noise is approximately Gaussian (does
not say anything about it being white)

» Mismatch is mainly due to the inaccurate assumption that the
non-zero entries of the sparse representation, z;, are i.i.d.



So what we have learned so far?

» The minimal Hamming weight of sparse representation of
WGN

» The marginal distribution of such sparse representations
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» Let x; be a k-sparse n-length vector
» Underdetermined linear transformation Dx, is observed

» Reconstruction with {p-norm

X = argmin||x|lo subject to Dxy, = Dx



Noiseless compressed sensing
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Noiseless compressed sensing

» Prefect reconstruction X = x, is possible with probability 1 if
» m > k + 1 for almost any x, (weak achievable region)
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Noiseless compressed sensing

» Prefect reconstruction X = x, is possible with probability 1 if
» m > k + 1 for almost any x (weak achievable region)
» m > 2k for any xx (strong achievable region)
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Noiseless compressed sensing

» Prefect reconstruction X = x, is possible with probability 1 if
» m > k + 1 for almost any x (weak achievable region)
» m > 2k for any xx (strong achievable region)
» Reconstruction is impossible with overwhelming probability for
m < k (strong converse region)
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fo-norm optimization complexity

X = argmin||x|lo subject to Dx, = Dx

» Prohibitively complex optimization problem
» NP-complete: requires combinatorial enumeration of the (})
possible sparse vectors
» Still of theoretical importance and may lead to practical
consequences and insights (e.g., bounds performance of
tractable reconstruction methods, like ¢; — norm optimization)



The CS "wonder"

» Reconstruction with ¢1-norm

X = argmin ||x||1

where [|x[1 £ 3= |

subject to Dxy = Dx



The CS "wonder"

» Reconstruction with £1-norm

X =argmin||x||; subjectto Dxy, = Dx
where |||y = 37 |xi

» Prefect reconstruction X = x is possible with probability 1 at
the cost of more required measurements w.r.t. {g-norm
minimization




The CS "wonder"

» Reconstruction with £1-norm

X =argmin||x||; subjectto Dxy, = Dx
where [[x|]1 £ 37, [x;]

» Prefect reconstruction X = x is possible with probability 1 at
the cost of more required measurements w.r.t. {p-norm
minimization

» However the ¢;-norm optimization problem is tractable with
polynomial complexity



The CS "wonder"

» Reconstruction with £1-norm

X =argmin||x||; subjectto Dxy, = Dx
where [x||1 = 37, [xi]

» Prefect reconstruction X = x is possible with probability 1 at
the cost of more required measurements w.r.t. {p-norm
minimization

» However the ¢;-norm optimization problem is tractable with
polynomial complexity

» We do not address ¢1-norm optimization in this talk
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» Underdetermined (overloaded) Gaussian vector channel

y:uﬂqutw
m

> Input x is kx-sparse
» E{x?} is finite



Noisy compressed sensing

v

v

v

v

Underdetermined (overloaded) Gaussian vector channel

y:

Input x is Ky-sparse

E{x?} is finite

Examples of overloaded Gaussian channels:

ﬂqutw
\/ m

D

m

n

CDMA spreading matrix

processing gain

users

MIMO fading channel

rx. antennas

tx. antennas




Noisy compressed sensing via WGN sparse representation

» Let z;- € R" be a k;-sparsest WGN representation
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> Let z;« € R” be a kX-sparsest WGN representation
» Thus for the dictionary/channel D

y\/;Dx+ \/7 snrx—&—fzk*)\/i




Noisy compressed sensing via WGN sparse representation

» Let z;- € R" be a k;-sparsest WGN representation
» Thus for the dictionary/channel D

1 1
yzwlﬂDx—i—w:\/—D( snrx + y/azgs ) =/ —Dx*
m m @ m

> x* is the sparsest representation of the observations y w.r.t.
the dictionary/channel D



From noisy to "noiseless" channel

\/SNR

—/ |
x"=a(%§=: Dhm ==
e/

\’SNR \"I‘“Zk*

» The noisy channel with x-sparse input is translated into a
noiseless channel with (kyx + K}, — KxK},)-sparse input



fo-norm decoding of Gaussian vector channel
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fo-norm decoding of Gaussian vector channel
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fo-norm decoding of Gaussian vector channel
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fo-norm decoding of Gaussian vector channel

» The support Qg of x* is now known, thus the problem is
well-posed and one could reconstruct x with Least-Squares
method

T -1pT

elsewhere




fo-norm decoding of Gaussian vector channel

Proposition

Given a Gaussian vector channel with measurement ratio o € (0,1)
and arbitrary snr> 0, then in the large-system limit an {y-norm
decoder results, with probability 1, in average mean-square error
(MSE) per unknown

L. 5 Kx + K} — KxK},
—[% = x| = :
n snr
as long as
*
a—K
Kx < f
1— &}

for almost any x. Otherwise Ly-reconstruction is impossible with
overwhelming probability.



lo-norm vs. oracle decoder

» In the absence of any other (prior) information, reconstruction
with MSE proportional to the noise level, as happens for
lo-norm decoding, is the best one can hope for

MSEy,

kx + K" — K

snr o

*
xR Rx
> — = I\/ISEoracle
snr



Universality

» For any orthonormal basis matrix ¥ (e.g., DFT matrix) and a
Gaussian dictionary D, the matrix DW¥ will be also a Gaussian
dictionary
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» Other applications (in, e.g., data hiding, cryptography,...)?



» Questions?

» E-mail: oshental@qualcomm.com

THANK YOU!
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