Two-dimensional GEM imaging detector with delay-line readout

G.P. Guedes1,a, A. Breskin1,b, R. Chechik1, D. Vartsky, D. Bar2, A.F. Barbosa3, P.R.B. Marinho3

1 Department of Particle Physics – Weizmann Institute of Science, 76100 – Rehovot, Israel

2 Soreq NRC, Yavneh, Israel

3 Centro Brasileiro de Pesquisas Físicas – CBPF, Rua Dr. Xavier Sigaud, 150 – 22290-180, Rio de Janeiro/RJ - Brazil

Abstract

A 100x100 mm2 2D imaging detector, based on a triple-GEM gaseous multiplier, stripped x-y readout anode and discrete delay-line readout, is presented. The fast (2.1 ns/tap) delay-line circuit was designed to match the anode-charge signal profile, namely its rise-time and length. The detector's imaging capability was systematically studied in Ar/CO$_2$ (70/30) with 5.9 KeV x-rays; x-y resolution of $\sigma = 0.05$ and 0.1 mm for top and bottom anode strips, respectively, and integral non-linearity of \sim0.15% are demonstrated.

Key Words: GEM, gaseous imaging detector, delay-line readout, 2D readout

PACS number: 84.30.-r, 84.30.Bv, 29.40.Cs, 29.40.Gx,

Submitted to Nucl. Instr. and Meth. A

Available at: www.weizmann.ac.il/~detlab

a On leave from the Lab. for Nucl. Instrum. – COPPE/UFRJ 21945-970 - Cidade Universitária/RJ - Brazil

b Corresponding author: Tel.: 972-8-9344966; Fax: 972-8-9342611; E-mail: amos.breskin@weizmann.ac.il
1. Introduction

The introduction of the Gas electron Multiplier (GEM) [1] opened a new trend in gas detector studies. Due to its reliability and ease of operation, GEM-based detectors have become an interesting alternative for radiation detection and imaging. By applying suitable potentials on the GEM electrodes, one can reach gains in excess of 10^3 with a single GEM foil; multiple GEMs can be assembled in cascade to provide orders of magnitude higher gains [2, 3]. Several studies have shown the influence of the geometrical operation parameters of GEMs on the electron transfer processes [2, 4-6] and on the spatial distribution of the avalanche-induced charges on the anode readout circuit [7-10].

Large area (31x31cm2) multi GEM detectors have been designed for tracking in intense particle beams [10-13] and for X-ray imaging [7, 14, 15]; different anode geometries have been used for electron collection and two-dimensional localization, e.g. orthogonal and small-angle strips, hexagonal pads [7, 8, 10, 11, 13-15]. Most of the readout techniques employ large number of discrete amplifiers and shaping electronics using ASIC chips, e.g. HELIX 128 [11] and PREMIX [7]. These solutions are expensive and the chips are in general spark-sensitive; they require powerful hardware, e.g. time consuming analog multiplexing, analog-to-digital conversions and computing analysis. A simpler solution, widely employed for the readout of wire chambers, is the use of discrete delay-line position encoding [16, 17]. These are discrete LC filter-cells connected to individual cathode or anode strips or wires, running at orthogonal directions. The delay-lines are read by current amplifiers, one at each end of the line; the charge localization is derived from the propagation time of the induced signal traveling along the delay-line.

In this work we present the results of laboratory studies of a 10x10cm2 triple-GEM detector equipped with a newly designed 2D position encoding delay-line readout. We describe the three-GEM detector and provide its general properties and imaging performance under operation with 5.9 KeV x-rays in atmospheric Ar/CO$_2$ (70/30).
2. The detector

The three-GEM detector is shown schematically in Fig. 1; it was assembled in a modular way, using CERN-made elements [18] and other homemade G-10 frames. Fig. 1a shows a top view of the open detector; Fig. 1b shows the frame arrangement and Fig. 1c shows details of the detector’s active elements assembly. All the detector elements are mounted, with screws, on a base-plate, which carries the high voltage (HV) connectors and the gas inlets. The delay-line printed circuit boards (PCBs) and the base-frame are glued onto the base-plate. The window frame, with 6 µm thick Mylar, is connected to the base-frame with screws through the intermediate frame and the gas enclosure is sealed with two rubber O-rings. The detector elements comprise a stainless steel drift-cathode mesh, three-10x10 cm2 GEMs stretched on 0.5 mm-thick G-10 frames and the two-dimensional strip-anode with connecting pads, which are bonded to the delay-line pads on PCBs by 200 µm wide gold ribbons. The CERN-made GEMs have bi-conical holes, 60 µm diameter at the Kapton and 80 µm diameter at the metal faces; they are arranged in a hexagonal pattern with a pitch of 140 µm. The 2D anode-strip electrode is made of two orthogonal strip-layers, separated by 50 µm thick Kapton and glued on a 0.5 mm G-10 support. Each layer has 512 gold-coated strips, 200-µm pitch; the top- and bottom-layer strips are 80 and 150 µm wide, respectively. This geometry results in a charge ratio (top-to-bottom) of 2:1 [10]. The drift, transfer and induction gaps, defined by spacers, are 3.7, 2 and 4 mm respectively.

From our recent measurements [9] of avalanche-induced electron-cloud lateral distributions in an Ar/CO$_2$ (70/30) operated double-GEM detector, we can calculate the expected lateral distribution in the three-GEM configuration. It is slightly further enlarged by electron diffusion in the additional, 2mm wide, transfer gap. Thus, the expected lateral distribution of the electron cloud at the anode has a sigma of about 230 µm; this is broad enough to allow for interconnecting every two anode strips into a single delay-line cell, resulting in 256 cells at 400 µm steps, per each dimension. The delay-line PCB was designed as a compact, double-sided circuit. Its components are located outside the detector and are arranged along an undulating line over a 24x4 cm2 area (Fig 2). The bonding of the delay-line PCB to the anode strips, shown in Fig. 3, is located inside the detector volume.

The GEMs are powered with a resistor network and a single negative power supply, as discussed in paragraph 4, in order to protect the detector against occasional discharges. The resistors values were chosen to provide a voltage drop across each GEM of VGEM=425V and
fields of ED=1150 Vcm⁻¹, ET=2100 Vcm⁻¹ and EI=2700 Vcm⁻¹ for the drift, transfer and induction gaps, respectively.

3. The Delay Line

Discrete-element delay-lines have been widely used to identify the position of ionizing events in gaseous detectors. Our goal was to show the viability of delay-lines as an economic 2D readout solution in association with a 100x100 mm² triple-GEM detector having a readout anode with orthogonal strips (400 µm readout pitch). Using very small surface mounted devices (SMD) we projected a delay-line with 256 LC cells; its parameters were chosen according to the following requirements: (i) high impedance $Z = \sqrt{L/C}$, (ii) small size, (iii) low intrinsic inductor resistance R_i, (iv) tight tolerance and (v) good thermal stability. Except for the first, all requirements are related to the components manufacturing quality and technology.

We have chosen wire-wound inductor coil on ferrite core ($L=290\pm5\%$ nH) with nominal DC resistance $R_i=0.17\pm3\%$ and monolithic ceramic capacitors ($C=6.8\pm0.25$ pF), both from Murata. The respective element sizes for the inductor and the capacitor are 3.2x1.6 mm² (standard 1206) and 1.6x0.8 mm² (standard 0603). With these components we estimated the delay per tap to be 1.4 nsec, the line impedance of a 256-cells line to be 206 Ω and the total DC resistance 43 Ω.

With these delay line components, and using our previously measured rise-time and pulse width of the induced signal on the readout circuit [9], we have simulated, designed and tested the performance of a 256-cell discrete delay-line circuit, as detailed in the next sections.

3.1 Simulations

We used the program ORCAD PSpice Version 9.0 to simulate the full delay-line circuit response. In this simulation we have also taken into account the parameters of the pulse-generator (output impedance 50Ω), used on the test bench to provide the input signal, and that of the oscilloscope, used to observe the output signal (input impedance 1MΩ; capacitance 25pF). The simulated circuit is shown in Fig. 4. Due to the large number of inductors, we were particularly interested in the effect of their resistivity on the signal attenuation and rise-time degradation along the delay-line cells. We have therefore studied two cases: a delay-line with intrinsic nominal resistivity ($R_i=0.17\pm3\%\Omega$) and without resistivity ($R_i=0\Omega$) for comparison.
The simulation results are presented in the following section together with the experimental ones.

3.2 Design and construction

The delay-line elements are arranged in an undulating pattern on both sides of the PCB, each LC cell having neighbors on the opposite side of the PCB (Fig.2). The delay-line circuit is placed outside the detector volume; it has connecting strips (400µm pitch), each bonded to two anode strips (the anode has a 200µm pitch) with 200 µm wide and 25 µm thick gold ribbons. (Fig.3). It should be noted that after bonding the delay-line to the anode strips, parasitic capacitances between neighboring strips, of about 3.1pF [7], modified the delay-line AC characteristics; the total delay increased by about 50% compared to the designed value, namely from 360ns to about 540ns. The signals are read at both ends of the line with a fast preamplifier, via impedance-matching termination.

The termination should match the delay-line impedance of $Z=206\,\Omega$ to the external-electronics impedance of 50Ω, and avoid reflections along the delay-line circuit. We tested three types of termination: resistive, inductive and capacitive; Fig. 5 shows delay-line output signals for each termination type, measured at the center of the sensitive area, on the bottom layer of the anode. In all cases the termination was defined empirically by adjusting its parameters to obtain the best results. For the resistive termination, we found $R_t=220\,\Omega$. The best inductive termination (a coil with wires on a ferrite core [19]) was wounded with $n_1=7$ turns and $n_2=4$ turns. For the capacitive termination, we used $C_t=68\,\mu F$ with a resistor $R_t=1\,k\Omega$. One may notice the persistent presence of a bipolar “precursor” signal, preceding the delayed signal. It is due to the capacitive coupling between both anode planes, and it appears at the instance of the electron cloud formation on the last GEM; its 100 ns rise-time corresponds to the drift time of the electrons from the last GEM to the anode [9]. Although the precursor signal is present on both delay-lines, connected to the top and bottom anode strips, it is relatively more pronounced on the bottom one, where the collected charge signal is smaller due to the uneven charge sharing mentioned above. In order to avoid triggering on the precursor pulse, we have used a capacitive termination on both delay-lines (Fig. 6).

3.2 Measurement and simulation results

The performance of the delay-line circuit in terms of amplitude attenuation and rise-time variation along the line was measured prior to its bonding to the anode strips and was compared to the simulated performance. The experimental arrangement is shown in Fig. 4.
Based on previous experiments of anode signal time development [9], and considering the detector induction parameters (gap and field), we decided to use in both the simulations and the measurements a ‘step’ input signal with 7.5ns rise-time and 100ns width. We injected the input signal through one extremity and recorded the delayed pulses along the delay-line cells. Fig. 7 shows the input pulse and its delayed output recorded from the delay line PCB. The total delay measured was about 380 ns (1.5 ns/cell), slightly above the calculated value of 1.4 ns/cell. This difference may be explained by the effects of parasitic capacitance increasing the effective values of C, therefore increasing the total delay.

Fig. 8 shows the measured and simulated amplitude attenuation along the delay-line. The discrepancy between simulated ($R_i=0.17\,\Omega$) and measured data is about 7%. The maximum attenuation is 20%, which is generally acceptable. Fig. 9 shows the measured and simulated rise-time (from 10-90% of maximum amplitude) variation along the delay-line. It is clear from the simulation that the rise-time variation is not sensitive to the inductors resistance and it increases from 7.5 up to 30 ns. The rise-time recorded experimentally increases monotonously along the line, reaching 35 ns at the delay-line end. The difference between simulated and experimental data could be due to the parasitic capacitance on the parallel strips connecting the delay-line cells to the PCB edge, which was not included in the simulations. This parasitic capacitance acts as a feedback capacitor, which affects the delay-line time response: it allows for higher frequencies to be transmitted and actually improves the linearity between rise-time and delay-line length. In fact, the mutual inductance between neighboring inductors could also affect the time response and should be considered in the simulation, but it is very difficult to estimate its value.

4. Data Acquisition System

Fig.10 shows the CAMAC-based data acquisition scheme. Charge signals from top GEM3 electrode are processed by a charge amplifier (Ortec 124, sensitivity=275mV/pC) followed by a shaping timing filter amplifier (TFA); they are digitized by a 12-channels 11-bit integrating analog-to-digital converter (LeCroy – ADC 2249W). The ADC gate pulse is generated by a timer (CAEN mod 2255B) triggered by the fast signal from the bottom GEM3; it has about 200ns width, corresponding to the duration of the charge pulse, after the timing filter amplifier. An electronic logic disables re-triggering of the gate signal for about 120μs, the time required to perform a conversion in the ADC. The fast signal from the bottom GEM3
electrode is also used as a common ‘START’ signal to the time-to-digital (TDC) CAMAC module (LeCroy – TDC 2228A), which records the time difference between this signal and each of the four ‘STOP’ signals, from each delay-line end-outputs. All fast signals are processed by current amplifiers (VV44 MPI Heidelberg, 6 ns time constant) and constant fraction discriminators (Ortec CFD – mod. 934). The data is further routed via a CAMAC crate controller (Sparrow - SCM 301) to the computer, and processed with KmaxNT™ (Sparrow Corporation) software and additional dedicated software for processing and display.

5. System performance

To characterize the performance of the detector we carried out measurements on gain uniformity, energy resolution, differential non-linearity (DNL), integral non-linearity (INL), and spatial resolution of the detector using a 55Fe (5.9 keV) x-ray source and Ar/CO$_2$ (70/30) gas mixture at atmospheric pressure.

Fig.11 shows the gain as function of VGEM for the 3-GEM detectors. The gain curve for a 2-GEM detector is shown for comparison. We currently work with gain of about 10^5, which is safer to reach with triple-GEMs [20]. Gain uniformity is demonstrated in Fig.12, showing energy spectra collected with a collimated source at five different positions over the sensitive area; except from one corner (gas outlet), the detector has a remarkably uniform response; the energy resolution, $\Delta E/E$, is of 19-20% FWHM, at the gain of 10^5.

Differential non-linearity (DNL) of the position recording was measured by irradiating the entire sensitive area; the x-ray source was positioned 0.7m away from the window, providing a full detector image with 2048x2048 pixels. Fig.13. We can notice some defects in the image, corresponding to some defects in the detector, e.g. interrupted anode strips and open connections. For the purpose of DNL evaluation on X and Y coordinates we defined a region of interest (ROI) excluding these defects and the data from this ROI on the X and Y axis; the results are shown in Fig.14. We define the differential non-linearity as the variance of these distributions (RMS); we have measured DNL$_X=5.1\%$ and DNL$_Y=5.4\%$. An important component in the DNL originates from to the undulating architecture of the delay-line circuit; it introduces a wavy response with peaks spaced by about 130 channels (6.5 mm), which is the undulation pitch. (Fig. 2).

The integral non-linearity (INL) in the X-Y response was measured using a laser-trimmed stainless steel mask, with 20-slits at 5mm pitch, each 300µm wide and 15 mm long. The mask was aligned to the anode strips of interest and the detector was irradiated through the
slits. Fig.15a shows a typical image of the mask; Fig.15b and Fig.15c show enlarged views of that image aligned to top and bottom anode planes respectively. The projected image contains peaks, the centroid of which is measured. The INL is the deviation of the measured centroid from a best-fit straight line. The measured centroid positions are shown in Fig. 16a and Fig. 16b as a function of the slit position; the INL is quoted as a percentage of the full-scale, for top (X) and bottom (Y) anode strip-planes respectively. We calculated \(\text{INL}_X \leq 0.12\% \) and \(\text{INL}_Y \leq 0.15\% \). The undulations on both INL curves are due to the different pitch of the mask slits and the anode strips, resulting in better INL wherever they overlap.

Spatial resolution was measured at five positions over the sensitive area of the detector: Pos0 at the center and Pos1-4 at each corner. We used a 3-slit collimator with 1.1mm pitch, 50 mm height and 100\(\mu \)m width. The slits were aligned with the top or bottom anode strips to provide the resolution. From the projection of the collimator image on the axis of interest we extracted the rms width of the peaks. Fig. 17a and Fig. 17b show examples of histograms for top (X) and bottom (Y) strip-layers at Pos0, at the center of the detector area. The recorded widths values were corrected for the collimator size (\(\sigma_{\text{geo}} = 65\mu\text{m} \)) to provide the detector’s intrinsic resolution. Table 1 shows the rms values averaged over the three slits. The large spread in the values given in Table 1 is mainly due to the fact that the slit-image width depends on interpolation between the strips; thus, when the collimator slit is positioned in front of a strip, a narrower image is recorded as compared to the case when the slit is between strips.

Table 1. Average values of intrinsic localization resolution, measured at five positions over the detector’s sensitive area (Pos0 at the center, Pos1-4 at the corners).

<table>
<thead>
<tr>
<th></th>
<th>Pos 0</th>
<th>Pos 1</th>
<th>Pos 2</th>
<th>Pos 3</th>
<th>Pos 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top - (\sigma_X) ((\mu)m)</td>
<td>21.1</td>
<td>38.8</td>
<td>74.4</td>
<td>60.8</td>
<td>50.1</td>
</tr>
<tr>
<td>Bottom - (\sigma_Y) ((\mu)m)</td>
<td>101.3</td>
<td>102.4</td>
<td>150.7</td>
<td>86.3</td>
<td>76.5</td>
</tr>
</tbody>
</table>

In both top and bottom data set, the worst resolution was recorded at Pos-2, where the gas outlet is found and where the delay-line PCBs are close to each other, which can raise the cross-talk between them and consequently deteriorate the signal. It also should be noted that since the resolution was obtained from a projection of a 50mm long slit, it contains some contribution from the detector INL, as evident from Fig. 17c, showing the "wavy" 2D slits-image used for the resolution measurements of Fig. 17b (slits aligned to the Y strips).
Fig. 18 illustrates the overall imaging performance of the detector, irradiated through a thin patterned metal mask located at its center. Notice the absence of image defects, generally associated with discharges, indicating upon a very stable operation of the detector. The “wavy” pattern resulting from the INL discussed above can be easily software-corrected.

6. Summary and discussion

We have investigated the performance of a triple-GEM imaging detector, equipped with a delay-line readout circuit developed within this work. An energy resolution of 20% with 6 keV x-rays was recorded, typical for such detectors [13]; a rather uniform gain was found over the detector sensitive area of 100x100mm². We have shown that the delay-line readout can be adapted for position recording with GEM-based radiation detectors, having orthogonal anode strips; the intrinsic spatial resolution is comparable to that obtained with ASIC multi-channel amplifiers [11, 13]. This type of economic readout has the advantages of having very few electronics channels with good position interpolation, good resistance to eventual discharges and rather fast data processing, which depends upon the digitizing electronics. Our demonstration was done with relatively slow electronics, having typical event dead time of 120µsec (ADC conversion time). The detector presents a good linearity in its position response; we measured a differential non-linearity, DNL, of about 5% and an integral non-linearity, INL, of about 0.15%. The differential non-linearity can be easily software-corrected. The average intrinsic spatial resolution over the whole sensitive area is better with the top strips (<σₓ>~50µm) than with the bottom strips (<σᵧ>~100µm), due to the uneven charge sharing between the two strip layers. These resolutions are adequate for many radiation imaging applications, e.g. of soft x-rays, thermal neutrons [21], single-photons in gaseous photomultipliers [22], etc.

Due to the unbalanced charge sharing, the compared performance between top and bottom anode-strip layers is impaired. New studies have been done on the strips geometry in order to balance the charge sharing between top and bottom anode planes and to reduce the parasite capacitance among neighboring strips [7, 10, 23]. With more adequate two-dimensional strip planes one can improve the position resolution and enhance the AC characteristics of the delay-line leading to better global performance of the detector. We have seen that the discrepancy between the designed and measured delay-line characteristics is mainly due to the anode-strip capacitance and to effects resulting from the architectural design of the delay-line PCB. More careful design of the delay-line circuit architecture would also reduce part of the observed non-linearity.
In this work we have used a discrete-element delay-line, bonded to the anode strips; a more elegant solution consists of 2D readout circuits incorporating both the readout strips and meander delay-lines, on the same PCB [23]. The GEM-induced anode signals have typically narrow distributions [9], necessitating delay-lines with large numbers of cells (small anode-strip pitch). A better solution would consist on measuring charges induced on 2D anode strips, located behind a resistive layer [23, 24]; this would yield broader charge distributions and consequently easier interpolation with larger anode-strip pitch and smaller number of delay-line cells.

Acknowledgments

We are thankful to Dr. F. Sauli, CERN, for supplying us with the GEM detector assembly; we are indebted to Dr. Y. Myasoedov, Dr. M. Rapaport, Y. Gal, Y. Gil, M. Sidi and M. Klin of the Weizmann Institute of Science, for their advice and technical support and to L. Manhaes and H.P. Lima Jr. from CBPF, for their assistance in programming and hardware; G. Guedes thanks CAPES - Brazilian grant agency – for the financial support (PDEE process #2070006) and to the Weizmann Institute of Science for the hospitality during his stay. The present research was partially supported by the Planning and Budgeting Committee of the Council for Higher Education in Israel. A. Breskin is the W. P. Reuther Professor of research in the peaceful use of atomic energy.

References

Figure Captions

Fig.1 – Details of the two-dimensional three-GEM detector assembly: (a) top view of open detector; (b) side view showing frames arrangement and (c) detailed side view. All the frames and spacers are made of G-10.

Fig.2 – A photograph of a segment of the delay-line circuit, highlighting its undulating structure on top (a) and bottom (b) faces of the PCB; (c) is a schematic side view of the elements shown in (a,b).

Fig.3 – Detail of the bonding between anode strips (200 μm pitch; left side) and the delay-line PCB (400 μm pitch; right side). The gold ribbon used is 200μm wide and 25μm thick. Each delay-line has 256 cells connected to 512 anode strips.

Fig.4 – Equivalent delay-line LRC circuit. It represents the actual inductor as a non-resistive coil (L) in series with an internal resistance (Ri). The delay-line is terminated resistively (Rt) with a capacitive decoupling (Ct).

Fig.5 – Results of tests carried out with the GEM detector and three delay-line termination types: (a) resistive, (b) inductive and, (c) capacitive. In the first two, we observe a broad precursor signal; it is largely reduced by using a capacitive termination (c).

Fig.6 – The circuit used in the simulations; we included resistive delay-line terminations (220Ω) and the characteristic impedances of both, the pulse generator and the oscilloscope.

Fig.7 – The input square pulse with 7.5ns rise-time, 100ns width and 1V amplitude used in the delay line evaluation measurements (left) and the output pulse, delayed by 384ns, after 256 cells.

Fig.8 – Simulated and recorded amplitude attenuation along the delay-line for a square input pulse (see Fig. 7). The simulations were done for both non-resistive (open circle) and for the maximum nominal intrinsic resistance (closed triangle) of the inductor.

Fig.9 - Simulated and recorded rise-time variation, (10 to 90% of maximum) along the delay-line, for a 7.5ns rise-time and 100ns wide square input pulse. The simulated data show no dependence on the assumed intrinsic resistance of the inductor.

Fig.10 – Electronic diagram showing the power circuit of the GEMs and the CAMAC-based readout. All the current amplifiers (VV44) have 6ns rise-time. In the resistive divider, R = 22MΩ.
Fig. 11 – Gain of double- and a triple-GEM detectors as function of the voltage across a GEM, in Ar/CO₂ (70/30) at atmospheric pressure. The signals were recorded on the top electrode of GEM3.

Fig. 12 – Energy spectra of 6keV X-rays, recorded at five positions over the sensitive area, indicated in the figure. The energy resolution is about 20% (FWHM) and the peaks are well above the noise. Atmospheric Ar/CO₂ (70/30), total gain 10⁵.

Fig. 13 – The 2D response of the detector, under uniform irradiation with an x-ray source positioned 0.7m away from the window. The dark lines on the image are due to broken connections; the short vertical line is due to an interrupted anode strip.

Fig. 14 – Differential non-linearity (DNL) in the regions of interest (ROI) defined on the projected position spectra taken from Fig. 13. The DNL is defined as the variance of the counts distribution for each spectrum.

Fig. 15 – 2D images recorded with a 20-slits mask of 300μm wide, 15mm long, 5mm pitch. (a) the full mask; (b) an enlarged segment with the slits parallel to the top (X) anode strips; (c) same for the bottom (Y) anode strips. The observed non-linearities are discussed in the text.

Fig. 16 – Integral non-linearity (INL) of the detector, calculated from the centroid of peaks in the projected 1D images of the 2D ones shown in Fig. 15. The INL is defined as the maximum deviation of the measured centroid position from its best fit to a straight line.

Fig. 17 – Position resolution measured for (a) top and (b) bottom anode-strip planes recorded at the center of the sensitive area, using a collimator with three slits 50μm wide and 1mm apart. The spectra were obtained by projecting the whole 2D image of the 15mm long slits, shown in (c).

Fig. 18 – A 2D x-ray image of a patterned metal mask and a zoom at its center.
Fig. 1
Fig. 2

To the anode strips

16
Fig. 3
Fig. 4
Fig. 5

(a) Delayed signal

“Precursor” signal

10.0 mV/Ω 200 ns

(b) “Precursor” signal

Delayed signal

10.0 mV/Ω 200 ns

(c) “Precursor” signal

Delayed signal

10.0 mV/Ω 200 ns

Fig. 5
To the anode strips

Fig. 6

$L = 290 \text{nH} \\
R_i = 0.17 \Omega \\
C = 6.8 \text{pF}$

Inductor

$L \\
R_i$

Termination

$C_t = 68 \text{pF} \\
R_t = 1 \text{k}\Omega$
Fig. 7
Simulated data (Ri=0Ω)
Simulated data (Ri=0.17Ω)
Recorded data

Amplitude [V]

Cell #

Fig. 8
Fig. 9
Fig. 10
Gain Curves

Ar/CO₂ (70/30)

- Red dots: Triple-GEM
- White squares: Dual-GEM

Fig. 7: Gain Curves

Fig. 11
Fig. 12

Delay-line bottom

Delay-line top

Counts [a.u.]

Channel
Fig. 13

85mm
Fig. 14

- **X-Direction**
 - Counts
 - DNL: 5.1%

- **Y-Direction**
 - Counts
 - DNL: 5.4%
Fig. 15

Fig. 15
Fig. 16

Meas033_INL_X

- Slit Position (mm)
- Centroid (chn)
- INL (% FS)

- **X = 20.21 chn/mm**
- **Std. Deviation = 0.063**

Meas033_INL_Y

- Slit Position (mm)
- Centroid (chn)
- INL (% FS)

- **Y = 20.12 chn/mm**
- **Std. Deviation = 0.08**

Fig.16
Fig. 17

(a) Top

Entries

Error = 5µm (0.1chn)

σ1 = 66µm

σ2 = 66µm

σ3 = 70µm

Position (mm)

Entries

(b) Bottom

Error = 5µm (0.1chn)

σ1 = 130µm

σ2 = 121µm

σ3 = 110µm

Position (mm)
Fig. 17