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ABSTRACT: We report an update and enhancement of the
ACONFL (conformer energies of large alkanes [J. Phys. Chem.
A2022,126, 3521−3535]) dataset. For the ACONF12 (n-
dodecane) subset, we report basis set limit canonical coupled-
cluster with singles, doubles, and perturbative triples [i.e.,
CCSD(T)] reference data obtained from the MP2-F12/cc-
pV{T,Q}Z-F12 extrapolation, [CCSD(F12*)-MP2-F12]/aug-cc-
pVTZ-F12, and a (T) correction from conventional CCSD(T)/
aug-cc-pV{D,T}Z calculations. Then, we explored the performance
of a variety of single and composite localized-orbital CCSD(T)
approximations, ultimately finding an affordable localized natural
orbital CCSD(T) [LNO-CCSD(T)]-based post-MP2 correction
that agrees to 0.006 kcal/mol mean absolute deviation with the
revised canonical reference data. In tandem with canonical MP2-F12 complete basis set extrapolation, this was then used to re-
evaluate the ACONF16 and ACONF20 subsets for n-hexadecane and n-icosane, respectively. Combining those with the revised
canonical reference data for the dodecane conformers (i.e., ACONF12 subset), a revised ACONFL set was obtained. It was then
used to assess the performance of different localized-orbital coupled-cluster approaches, such as pair natural orbital localized
CCSD(T) [PNO-LCCSD(T)] as implemented in MOLPRO, DLPNO-CCSD(T0) and DLPNO-CCSD(T1) as implemented in
ORCA, and LNO-CCSD(T) as implemented in MRCC, at their respective “Normal”, “Tight”, “vTight”, and “vvTight” accuracy
settings. For a given accuracy threshold and basis set, DLPNO-CCSD(T1) and DLPNO-CCSD(T0) perform comparably. With
“VeryTightPNO” cutoffs, explicitly correlated DLPNO-CCSD(T1)-F12/VDZ-F12 is the best pick among all the DLPNO-based
methods tested. To isolate basis set incompleteness from localized-orbital-related truncation errors (domain, LNOs), we have also
compared the localized coupled-cluster approaches with canonical DF-CCSD(T)/aug-cc-pVTZ for the ACONF12 set. We found
that gradually tightening the cutoffs improves the performance of LNO-CCSD(T), and using a composite scheme such as vTight +
0.50[vTight − Tight] improves things further. For DLPNO-CCSD(T1), “TightPNO” and “VeryTightPNO” offer a statistically
similar accuracy, which gets slightly better when TCutPNO is extrapolated to the complete PNO space limit. Similar to Brauer et al.’s
[Phys. Chem. Chem. Phys.2016,18 (31), 20905−20925] previous report for the S66x8 noncovalent interactions, the dispersion-
corrected direct random phase approximation (dRPA)-based double hybrids perform remarkably well for the ACONFL set. While
the revised reference data do not affect any conclusions on the less accurate methods, they may upend orderings for more accurate
methods with error statistics on the same order as the difference between reference datasets.

1. INTRODUCTION
According to the IUPAC gold book,1 a conformer is “one of a
set of stereoisomers (i.e., isomers that possess identical
constitution, but which differ in the arrangement of their
atoms in space1), each of which is characterized by a
conformation corresponding to a distinct potential energy
minimum”. A comprehensive understanding of the conformers
of organic and biomolecules is critical because they often show
distinct chemical and biological activities.2,3 Hence, accurate
estimation of their structural properties and conformational
energies (i.e., relative energies of other conformers with respect
to the most stable one) is essential for a better understanding
of biological phenomena, such as protein folding, substrate
binding, catalysis by enzymes, and many more (see refs 4 and 5

and references therein). Multiple conformers of a certain
molecule often span a relatively narrow conformational energy
range. Hence, these structures exist as a thermally populated
mixture at room or physiological temperature. Therefore, all
relevant conformers must be considered to evaluate molecular
properties accurately.6
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Due to the high flexibility of open-chain molecules in
conformational space,7 these are often used for modeling
flexible biological systems, for example, in drug discovery and
related applications.8 One class of such systems are linear n-
alkanes (i.e., CnH2n+2); simple as they may be, they constitute
key building blocks of organic chemistry, of fossil fuels, and of
polymers, lipids, and biomembranes.
Since the pioneering work of Pitzer,9 the existence of

different conformers of n-alkane is well known. Over the years,
conformational enthalpies and low-lying conformers of shorter
unbranched alkane chains have been studied experimen-
tally.10−12 On the other hand, theoretically, the torsional
space and equilibrium conformational energies of short n-
alkanes have also been explored theoretically.13−17 Previous
theoretical studies18−21 on the longer n-alkane chains (n > 10)
often investigated a handful of the lowest energy conformers to
find the balance between repulsive hydrogen contacts and
attractive London dispersion and finally predict the energy gap
between the linear zigzag and hairpin-like conformers.
In 2009, Gruzman et al.14 published comprehensive

theoretical studies on conformational equilibrium energies of
five unbranched n-alkane isomers: n-butane, n-pentane, n-
hexane, n-heptane, and n-octane (i.e., CnH2n+2; n = 4−8).
Later, to elucidate the correct treatment of dispersion, a
detailed study of the entire conformer surface of n-pentane was
performed by Martin.13 Both experimental19 and theoreti-
cal22,23 studies have already established that due to the much
stronger attractive London dispersion, the conformational
preferences of longer unbranched n-alkanes (in both the gas

and liquid phases) are very different from what we generally
see for the short n-alkanes. Hence, a comprehensive study of
longer n-alkane conformers beyond the n-octane is vital from
chemical and biological perspectives.
Recently, Ehlert et al.24 have proposed the ACONFL dataset

(conformer energies of large alkanes), composed of the 13, 17,
and 21 lowest-energy conformers of n-dodecane, n-hexadecane,
and n-icosane, respectively. That is, the complete ACONFL set
consists of 12 n-dodecane conformer energies (i.e.,
ACONF12), 16 n-hexadecane conformer energies (i.e.,
ACONF16), and 20 n-icosane conformer energies (i.e.,
ACONF20). In ref 24, the reference conformer energies of
ACONF12 were calculated at the DLPNO-CCSD(T1)/
AV{T,Q}Z level with the VeryTightPNO setting. As the
complete basis set (CBS) extrapolation for the ACONF16 and
ACONF20 conformers are still too expensive, the authors in
ref 24 used the arithmetic mean of the δCBS and xCBS
schemes. Both δCBS and xCBS are based on focal-point
analysis. (For the details of δCBS and xCBS extrapolation
techniques, see refs 24 and 25, respectively.)
Although canonical coupled-cluster with singles, doubles,

and perturbative triples [CCSD(T)] or explicitly correlated
CCSD(T)-F12 are preferred for accurate conformer energies,
due to the steep N7 cost scaling of these methods with the
system size, using them is often impractical for large molecules.
Hence, linear-scaling localized coupled-cluster methods such as
the pair natural orbital localized CCSD(T) [PNO-LCCSD-
(T)] method of Ma and Werner,26 the domain-localized pair
natural orbital CCSD(T) [DLPNO-CCSD(T)] by Riplinger,

Table 2. MADs (kcal/mol), RMSDs (kcal/mol), and MSDs (kcal/mol) of Different Standard and Composite Localized
Coupled-Cluster Methods Relative to the Canonical DF-CCSD(T) Level Conformer Energies of n-Dodecanea

methods threshold
coeff.
(A) TCutPNO

MAD
(kcal/mol)

RMSD
(kcal/mol)

MSD
(kcal/mol)

LNO-CCSD(T) Normal 0.31 0.32 −0.31
Tight 0.15 0.15 −0.15
vTight 0.05 0.06 −0.05
vvTight 0.05 0.05 −0.05
Tight + A[Tight − Normal]b 0.50 0.07 0.08 −0.07
vTight + A[vTight − Tight]b 0.50 0.01 0.02 −0.01
Tight + A[Tight − Normal] 0.84 0.03 0.04 −0.01
vTight + A[vTight − Tight] 0.60 0.01 0.01 0.00

PNO-LCCSD(T) Default 0.49 0.51 0.49
Tight 0.38 0.40 0.38
Tight + A[Tight − Default] 0.50 0.33 0.35 0.33
Tight + A[Tight − Default] 3.32 0.05 0.08 0.02

DLPNO-CCSD(T0) NormalPNO 0.22 0.23 −0.22
TightPNO TCutPNO = 10−6 0.16 0.16 0.16

TCutPNO = 10−7 0.07 0.08 0.07
CPSc or 1.0x 10−{6,7} 0.03 0.03 0.03

VeryTightPNO 0.09 0.10 0.09
TightPNO + A[TightPNO − NormalPNO] 0.50 0.22 0.22 0.22
TightPNO + A[TightPNO − NormalPNO] −0.24 0.01 0.02 0.00

DLPNO-CCSD(T1) NormalPNO 0.24 0.25 −0.24
TightPNO TCutPNO = 10−6 0.13 0.14 0.13

TCutPNO = 10−7 0.05 0.05 0.05
CPSc or 1.0x 10−{6,7} 0.01 0.02 0.00

VeryTightPNO 0.07 0.08 0.07
TightPNO + A[TightPNO − NormalPNO] 0.50 0.19 0.19 0.19
TightPNO + A[TightPNO − NormalPNO] −0.15 0.01 0.02 0.00

aWe have used the aug-cc-pVTZ basis set throughout. bComposite methods proposed in ref 31. cCPS = complete PNO space limit; ECPS = EX +
[Yβ/(Yβ − Xβ)]*(EY − EX), where Y = X+1 and β = 7.13, which corresponds numerically to ECPS = EY + 0.5(EY − EX) (see ref 63).
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Guo, Pinski, Valeev, and Neese,27,28 and the localized natural
orbital CCSD(T) [LNO-CCSD(T)] method of Nagy, Kaĺlay,
and co-workers29−31 are attractive alternatives to canonical

coupled-cluster methods. With a sufficiently tight accuracy
setting, these methods can achieve an accuracy similar to that
of canonical CCSD(T) in the same basis set. Although the

Table 3. List of Localized Orbital-Based High-Level Corrections and Their Performance Relative to the Canonical HLC Used
on Top of the RI-MP2-F12/CBS Level Conformer Energies for the Revised Reference Conformer Energies of the ACONF12
Seta,b

HLCs acronyms MAD (kcal/mol) RMSD (kcal/mol) MSD (kcal/mol)

[CCSD(F12*) − MP2-F12]/VTZ-F12 + (T)/AV{D,T}Z reference

[DF-CCSD(T) − RI-MP2]/AVTZ HLC1 0.035 0.038 0.035
[DLPNO-CCSD(T1) − LMP2]/TightPNO/CPS{6,7}/AVTZ HLC2 0.050 0.053 0.050
[DLPNO-CCSD(T1) − LMP2]/VeryTightPNO/AVTZ HLC3 0.073 0.078 0.073
[DLPNO-CCSD(T1) − LMP2]/VeryTightPNO/AV{T,Q}Z HLC4 0.125 0.132 0.125
[DLPNO-CCSD(T1) − LMP2]/TightPNO/CPS{6,7}/AV{T,Q}Z HLC5 0.130 0.132 0.130
[LNO-CCSD(T) − LMP2]/Tight/AVTZ HLC6 0.032 0.034 −0.032
[LNO-CCSD(T) − LMP2]/vTight/AVTZ HLC7 0.017 0.021 0.016
[LNO-CCSD(T) − LMP2]/vvTight/AVTZ HLC8 0.016 0.023 0.015
[LNO-CCSD(T) − LMP2]/Tight/AVQZ HLC9 0.009 0.011 −0.007
[LNO-CCSD(T) − LMP2]/vTight/AVQZ HLC10 0.059 0.062 0.059
[LNO-CCSD(T) − LMP2]/vTight/AV5Z HLC11 0.031 0.032 0.031
[LNO-CCSD(T) − LMP2]/vTight/AV{T,Q}Z HLC12 0.088 0.091 0.088
[LNO-CCSD(T) − LMP2]/Tight/AV{T,Q}Z HLC13 0.012 0.014 0.010
[LNO-CCSD(T) − LMP2]/vTight/AV{Q,5}Z HLC14 0.006 0.008 0.000
[PNO-LCCSD(T) − LMP2]/Default/AVTZ HLC15 0.015 0.018 0.015
[PNO-LCCSD(T) − LMP2]/Tight/AVTZ HLC16 0.038 0.039 0.038
[PNO-CCSD(T) − LMP2]/Default/AVQZ HLC17 0.035 0.035 0.035
[PNO-CCSD(T) − LMP2]/Tight/AVQZ HLC18 0.052 0.053 0.052
[PNO-LCCSD(T) − LMP2]/Default/AV{T,Q}Z HLC19 0.048 0.048 0.048
[PNO-LCCSD(T) − LMP2]/Tight/AV{T,Q}Z HLC20 0.062 0.063 0.062
[PNO-LCCSD(Ts)-F12b − LMP2-F12]/Default/VTZ-F12 HLC21 0.087 0.089 0.087
[PNO-LCCSD(Ts)-F12b − LMP2-F12]/Tight/VTZ-F12 HLC22 0.091 0.091 0.091

aAll the results are in kcal/mol. bCPS = complete PNO space limit; ECPS = EX + [Yβ/(Yβ − Xβ)]*(EY − EX), where Y = X+1 and β = 7.13 (see ref
63). The expression CPS{X,Y} refers to the extrapolation of TCutPNO to the CPS limit using TCutPNO = 10−X and 10−Y.

Table 4. Our Best Estimates of ACONFL Conformer Energiesa

# conformers ACONF12 ΔEconf(kcal/mol)b # conformers ACONF16 ΔEconf(kcal/mol)c # conformers ACONF20 ΔEconf(kcal/mol)b

1 1.82 00 −0.49 0 2.20
2 2.05 1 2.15 1 4.15
3 2.49 3 2.54 5 4.81
4 3.16 4 2.68 6 4.99
5 3.66 2 2.94 7 5.27
6 3.88 6 3.24 3 4.85
7 4.16 7 3.28 11 5.60
8 4.31 5 3.34 10 5.58
9 4.89 8 3.68 4 5.31
10 5.45 9 3.98 12 5.74
11 5.99 10 4.08 8 5.28
12 6.56 11 4.35 2 5.05

12 4.54 9 5.77
14 4.95 16 6.01
13 5.02 13 6.12
15 5.84 17 6.33
16 6.11 15 6.52

19 6.65
14 6.38
18 6.74
20 7.94

aFor convenience, we have retained the numbering and ordering of different conformers from ref 24 ; conformer energies of n-dodecane (i.e.,
ACONF12 set) and n-hexadecane (i.e., ACONF16 set) are relative to the all-trans conformer 0, while those for n-icosane (i.e., ACONF20 set) are
relative to the “hairpin” conformer 00. bΔEconf = ΔEMP2‑F12/V{T,Q}Z‑F12 + ΔΔE[CCSD(F12*) − MP2‑F12]/VTZ‑F12 + ΔΔE(T)/AV{D,T}Z.

cΔEconf =
ΔEMP2‑F12/V{T,Q}Z‑F12 + ΔΔE[LNO‑CCSD(T) − LMP2]/vTight/AV{Q,5}Z.
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favorable linear cost scaling of the localized coupled-cluster
methods allows them to be used for systems with hundreds of
atoms, their accuracy is subject to multiple predefined cutoffs.
The fixed combinations for DLPNO-CCSD(T) are Loose-
PNO, NormalPNO, TightPNO, and VeryTightPNO (see
Table 1 in ref 32 for definitions). The available accuracy
thresholds for LNO-CCSD(T) are Normal, Tight, vTight, or
vvTight (see Table 1 in ref 31 for details). In PNO-
LCCSD(T), Default and Tight (see Tables 1−4 in ref 26 for
more information) are the standard settings. Examples of
recent use of these localized orbital coupled-cluster methods
include the energetics of the (H2O)20 cages using PNO-
LCCSD(T)-F12b,33 (the F12b suffix refers to explicit
correlation34), the noncovalent interaction energies of seven
large dimers (L7 set35) with LNO-CCSD(T),36 the main
group thermochemistry, barrier heights, intra- and intermo-
lecular interaction energies of GMTKN5537 using DLPNO-
CCSD(T),38 and benchmark studies on the Ru(II) complexes
involved in hydroarylation,39 highly delocalized polypyrroles
(POLYPYR40 set), metal−organic barrier heights (MOBH35,
35 reactions41−43), an efficient estimation of formation
enthalpies (ΔfH0) for closed-shell organic compounds,44

predicting gas-phase anion binding energies,45 benchmarking
of localized orbital G4(MP2)-equivalents46,47 composite wave
function theory methods for fullerene isomerization energies,48

and so forth.
Recently, in a conference proceeding extended abstract49

and later in a full research article,50 the present authors have
evaluated the performance of pure and composite localized
coupled-cluster methods for the S66 and S66x8 noncovalent
interaction sets, respectively. In refs 49 and 50, we found that
LNO-CCSD(T) with a vvTight threshold can achieve
canonical CCSD(T) level accuracy. Designing few low-cost
composite methods, we obtained the noncovalent interaction
energies close to the reference level.
Hence, the main objectives of the present study are (a)

improving the reference conformer energies of longer n-alkane
chains and (b) evaluating different pure and composite
localized orbital coupled-cluster methods relative to the new
reference conformer energies. As a byproduct, some con-
clusions about DFT and other approximate methods can also
be drawn.
2. Computational Details. Explicitly correlated CCSD-

(F12*), CCSD(T)-(F12*), PNO-LCCSD(T)-F12b, and
regular PNO-LCCSD(T) single-point calculations were
performed with Molpro.51 The ORCA 5.0.352 package was
employed for the RI-MP2, explicitly correlated canonical RI-
MP2-F1253 with ansatz 3C(FIX), DLPNO-CCSD(T1)-F12,
and DLPNO-CCSD(T1) calculations. Finally, for the density-
fitted canonical CCSD(T) [i.e., DF-CCSD(T)] and for LNO-
CCSD(T), we used MRCC 2022.54 All the calculations were
carried out at the Faculty of Chemistry HPC facility at the
Weizmann Institute of Science.
For RI-MP2-F12 and CCSD(F12*), we employed the cc-

pVnZ-F1255 (n = T, Q) and cc-pVTZ-F1255 orbital basis sets,
respectively. Suitable OptRI, JKfit56 (for Coulomb and
exchange), and MP2fit57,58 [density fitting in MP2] basis set
combinations were used throughout the F12 calculations. The
DF-CCSD(T) calculations were carried out using correlation-
consistent aug-cc-pVnZ (n = D, T)59,60 orbital basis sets and
the corresponding resolution of identity (RI) fitting57,58 basis
sets.

For PNO-LCCSD(T)-F12b and DLPNO-CCSD(T1)-F12
calculations, we have used the cc-pVnZ-F12 (n = D, T) basis
set, with suitable JKfit56 and complementary auxiliary basis set
(CABS61) options. Geminal Slater exponent (β) values of 0.9
and 1.0 were used for pp-pVDZ-F12 and cc-pVTZ-F12,
respectively. All localized orbital F12 calculations were
performed using density fitting.
Correlation-consistent aug-cc-pVnZ (n = T, Q, and 5) basis

sets were used for the localized orbital coupled-cluster
calculations, together with suitable JKfit basis sets for the
Coulomb and exchange energy and RI fitting basis sets aug-cc-
pVnZ-RI57,58 (n = T, Q, and 5) for the correlation component.
For LNO-CCSD(T), we have used Normal, Tight, vTight, and
vvTight accuracy thresholds. On the other hand, Default and
Tight settings were employed for PNO-LCCSD(T). Following
a suggestion by Prof. H.-J. Werner (personal conversation with
the senior author), we have used the MOLPRO distance
criterion REXT = 0 for all PNO-LCCSD(T) and PNO-
LCCSD(T)-F12b calculations. [The default REXT setting for
the “Tight” and “Default” domains are 7 and 5 a.u.,
respectively. By using REXT = 0, the PAO domains are
selected based solely on the connectivity criterion IEXT (2 and
3, for the “Tight” and “Default” settings, respectively) only. For
the PNO-LCCSD(T) and PNO-LCCSD(T)-F12b statistics
with the default “REXT” values, see Tables S8 and S9 in the
Supporting Information].
For DLPNO-CCSD(T1), we have used NormalPNO,

TightPNO, and VeryTightPNO thresholds together with
RIJCOSX (RI in combination with the chain of spheres62

algorithm) approximation. To investigate the dependence of
the DLPNO-CCSD(T1) correlation on the size of the PNO
space, we have considered two TCutPNO (the occupation
number cutoff for a PNO to be included for a given electron
pair) values (10−X; X = 6 and 7) with the TightPNO threshold.
Two-point PNO extrapolations were also carried out to the
complete PNO space limit (CPS), using the simple two-point
extrapolation scheme proposed by Altun et al.,63

= + [ ] ×E E Y /(Y X ) (E E )X Y X , where Y = X + 1
and β = 7.13. This corresponds numerically to EX + 1.5 × (EY

− EX) or equivalently and perhaps more clearly EY + 0.5×(EY

− EX).
For two-point CBS extrapolation, we have employed the

expression from Halkier et al.,64 ECBS = EL + (EL − EL−1)/Ä
Ç
ÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑ( ) 1 ,L

L 1
where L refers to the basis set cardinal number,

and α is the basis set extrapolation exponent. Following Hill et
al.,65 we have used α = 4.355 and 2.531 for the RI-MP2-F12/
V{T,Q}Z-F12 and RI-MP2/AV{T,Q}Z energies, respectively.
While extrapolating the RI-MP2-F12 energies to the CBS limit,
the self-consistent field (SCF) component was taken from the
largest basis set calculation with CABS61 correction, and only
MP2-F12 components were extrapolated. For the AV{D,T}Z
extrapolation of the canonical perturbative triples term, we
have used α = 3.096, as recommended by Schwenke.66 Similar
to the W1 and W2 theories,67 for the localized coupled-cluster
methods, we used the extrapolation exponents 3.22 and 3.0 for
the AV{T,Q}Z and AV{Q,5}Z extrapolations, respectively.
Most of the DFT, semiempirical quantum mechanical

(SQM), and force field (FF) results were extracted from the
Supporting Information of ref 24. The revDSD-PBEP86-
D3BJ,68 revDSD-PBEP86-D4,68 and ωB97M(2)69 functionals
were evaluated using Q-CHEM 6.70 On the other hand,
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dRPA7571 and DSD-dRPA72 (where dRPA = direct random
phase approximation) calculations were performed using
MRCC 2022.54

Geometries of all the conformers of n-dodecane (C12H26), n-
hexadecane (C16H34), and n-icosane (C20H42) were extracted
from ref 24.
3. Results and Discussion.

(a) Revised reference conformer energies of n-dodecane:

As the first step, we calculated the canonical explicitly
correlated RI-MP2-F12 energies of the n-dodecane conformers
with cc-pVTZ-F12 and cc-pVQZ-F12 basis sets and extrapo-
lated them to the CBS limit to eliminate the basis set
incompleteness error (BSIE). On top of that, we have used the
[CCSD(F12*) − MP2-F12]/cc-pVTZ-F12 energies for the
CCSD-MP2 term of the high-level correction (HLC), while
the perturbative triples [i.e., (T)] contribution is taken from
the DF-CCSD(T)/AV{D,T}Z calculation. Hence, the final
equation for the calculation of the reference conformer
energies of n-dodecane is

=

+ *
+

{ }

[ ]

[ ] { }

E E

E

E

conf MP2 F12/V T,Q Z F12

CCSD(F12 ) MP2 F12 /VTZ F12

DF CCSD(T) DF CCSD /AV D,T Z

Based on the HLCs used for the S66 non-covalent
interaction energies, Kesharwani et al.,73 inspired by an earlier
study by Sherrill and co-workers,74 proposed a hierarchy of
noncovalent interaction energies: gold (employing [CCSD-
(F12*)−MP2-F12]/VQZ-F12 + (T)/haV{T,Q}Z), silver
(using [CCSD(F12*)−MP2-F12]/VTZ-F12 + (T)/haV-
{D,T}Z), and bronze (employing CCSD(F12*) (Tcsc)/cc-
pVDZ-F12). Hence, the revised reference data for the
ACONF12 set can be considered a “silver” standard.
Ehlert et al.’s DLPNO-CCSD(T1)/CBS energies evaluated

with a VeryTightPNO threshold have MAD = 0.25 kcal/mol
relative to the presently revised reference data. The mean
absolute error for the density-fitted canonical CCSD(T) with
two-point CBS extrapolation from the aug-cc-pVnZ (n = D
and T) energies is 0.35 kcal/mol [see footnote (d) of Table 1
for the extrapolation details]. A detailed inspection of the
signed deviations for the 12 n-dodecane conformer energies
reveals that DLPNO-CCSD(T1)/CBS overestimates but DF-
CCSD(T) underestimates the conformer energies across the
board (see Table 1).
Owing to their CPU time and resource requirements (over 3

weeks wall clock each, 512GB of RAM, and 3.3 TB of SSD
scratch disk), we were only able to calculate five CCSD(T)-
(F12*)/VTZ-F12 level conformer energies. We note that
unlike CCSD, F12 approaches do not benefit the connected
quasiperturbative triples,76 so the basis set convergence
behavior of the (T) contribution is effectively the same as
what one observes for the conventional CCSD(T) calculations.
In ref 75, Peterson et al. proposed a global scale factor, 1.0527,
for scaling the (T) component of the CCSD(T)-F12b/VTZ-
F12 level atomization energies. In the present study, we have
applied this so-called (Ts) approximation in the CCSD(Ts)
(F12*)/VTZ-F12 calculations. Table 1 shows that the
reference-level n-dodecane conformer energies are very close
to those obtained using (T)-scaled CCSD(T)-(F12*)/VTZ-
F12.

Now, let us take a closer look at the performance of RI-MP2
and explicitly correlated RI-MP2-F12 methods. Even with the
cc-pVDZ-F12 basis set, RI-MP2-F12 achieves the CBS limit
(MAD = 0.01 kcal/mol with respect to the RI-MP2-F12/
AV{T,Q}Z-F12 energies; see Table S1 in the Supporting
Information). However, if we assess the performance of RI-
MP2 and RI-MP2-F12 against the “new” reference data of n-
dodecane conformers, we found that RI-MP2/AV{T,Q}Z is
the best performer (MAD = 0.18 kcal/mol). Considering the
fact that the mean absolute difference between RI-MP2/
AV{T,Q}Z and RI-MP2-F12/AV{T,Q}Z-F12 is 0.15 kcal/
mol, we can safely say that the former method gets a better
answer for the wrong reasons. Canonical RI-MP2 and explicitly
correlated RI-MP2-F12 systematically underestimate the
conformer energies with respect to the “new” revised reference
(see Table S1 in the Supporting Information). Interestingly,
with {T,Q}-extrapolation, the accuracy of RI-MP2-F12 (MAD
= 0.33 kcal/mol) is only marginally worse than that of
DLPNO-CCSD(T1)/VeryTightPNO (MAD = 0.25 kcal/mol).
Next, in order to eliminate basis set incompleteness as a

“confounding factor”, we use the aug-cc-pVTZ basis set
throughout to assess the performance for ACONF12 of LNO-
CCSD(T), PNO-LCCSD(T), and DLPNO-CCSD(T1) rela-
tive to canonical DF-CCSD(T) (see Table 2). As expected,
tightening the accuracy threshold for LNO-CCSD(T)
improves its accuracy. Proposed by Nagy and Kaĺlay31 the
low-cost composite method Tight + 0.5[Tight − Normal]
performs similarly to LNO-CCSD(T, vTight). With a mean
absolute error of 0.01 kcal/mol, vTight + 0.5[vTight − Tight]
offers the best accuracy among all the individual and composite
LNO-CCSD(T) tested (see Table 2). Instead of using a fixed
0.5 prefactor in the composite schemes, when we optimized
the prefactors with respect to canonical CCSD(T)/AVTZ
conformer energies, we obtained slightly different values: 0.84
for Tight + A[Tight − Normal] and 0.60 for vTight +
A[vTight − Tight] (see Table 2). With a mean absolute
deviation (MAD) of 0.03 kcal/mol, Tight + 0.84[Tight −
Normal] is closer to the accuracy of vTight + 0.5[vTight −
Tight] than Tight + 0.5[Tight − Normal]. From the mean
signed deviation (MSD) values listed in Table 2, it is clear that
standard and composite LNO-CCSD(T) methods under-
estimate the conformer energies relative to canonical DF-
CCSD(T).
Standard PNO-LCCSD(T) with Default and Tight settings

significantly overestimates the ACONF12 energies (see Table
2). The PNO-based composite scheme, Tight + 0.50[Tight −
Default], performs only marginally better than the standard
alternatives. Upon optimization, the composite method, Tight
+ 3.32[Tight − Default], offers significantly better accuracy,
but with an anomalously large coefficient.
As expected, standard and composite DLPNO-CCSD(T1)

are marginally better than DLPNO-CCSD(T0) for any given
accuracy setting. DLPNO-CCSD(T1)/TightPNO with CPS
extrapolation from TCutTNO = {10−6, 10−7} performs better
than DLPNO-CCSD(T1)/VeryTightPNO. The latter method
is clearly a better performer than the composite method,
TightPNO + 0.5[TightPNO − NormalPNO], albeit at ca. 4
times the computational cost.
As DLPNO-CCSD(T1) is much more demanding in terms

of I/O, storage, and bandwidth requirements than DLPNO-
CCSD(T0),

39,41,42 the DLPNO-CCSD(T0)/TightPNO/CPS
can be a more economical alternative to DLPNO-CCSD(T1)/
TightPNO/CPS.
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Table 5. Performance of Standard and Composite LNO-CCSD(T), PNO-LCCSD(T), DLPNO-CCSD(T0), and DLPNO-
CCSD(T1) Methods with Respect to the Revised ACONFL Reference Dataa

MAD (kcal/mol)
MSD

ACONFL
RMSD

ACONFL

method details basis set threshold ACONFL ACONF12 ACONF16 ACONF20 (kcal/mol) (kcal/mol)

LNO-CCSD(T) AVTZ Normal 0.95 0.77 0.98 1.03 −0.13 1.05
AVQZ 0.36 0.29 0.38 0.38 −0.06 0.39
AV5Z 0.26 0.21 0.22 0.31 0.00 0.28
AV{T,Q}Z 0.05 0.03 0.03 0.09 −0.01 0.07
AV{Q,5}Z 0.17 0.14 0.09 0.25 0.06 0.20
AVTZ Tight 0.80 0.60 0.80 0.93 −0.08 0.91
AVQZ 0.22 0.16 0.22 0.25 −0.03 0.25
AV5Z 0.10 0.08 0.12 0.10 −0.03 0.12
AV{T,Q}Z 0.17 0.13 0.16 0.19 0.01 0.19
AV{Q,5}Z 0.04 0.01 0.03 0.08 −0.04 0.06
AVTZ vTight 0.73 0.51 0.69 0.89 −0.03 0.83
AVQZ 0.17 0.11 0.14 0.23 0.01 0.20
AV5Z 0.06 0.04 0.04 0.08 0.01 0.07
AV{T,Q}Z 0.19 0.15 0.22 0.20 0.04 0.22
AV{Q,5}Z 0.07 0.05 0.06 0.09 0.00 0.08
AVTZ vvTight 0.72 0.50 0.69 0.87 −0.03 0.82

PNO-LCCSD(T) AVTZ Default 0.05 0.04 0.04 0.07 −0.01 0.06
AVQZ 0.11 0.12 0.16 0.07 0.07 0.12
AV5Z 0.10 0.18
AV{T,Q}Z 0.17 0.18 0.24 0.12 0.11 0.19
AV{Q,5}Z 0.08 0.21
AVTZ Tight 0.08 0.07 0.09 0.07 −0.05 0.09
AVQZ 0.09 0.11 0.13 0.05 0.06 0.10
AV5Z 0.10
AV{T,Q}Z 0.20 0.23 0.29 0.12 0.14 0.23
AV{Q,5}Z 0.10

DLPNO-CCSD(T0) AVTZ NormalPNO 0.73 0.68 0.88 0.63 −0.24 0.79
AVQZ 0.28 0.32 0.39 0.17 −0.16 0.32
AV5Z 0.22 0.28 0.33 0.10 −0.19 0.26
AV{T,Q} 0.12 0.09 0.07 0.17 −0.11 0.14
AV{Q,5} 0.22 0.23 0.27 0.17 −0.21 0.23

AVTZ TightPNO (TCutPNO=10‑6) 0.51 0.30 0.43 0.69 0.05 0.60
AVQZ 0.08 0.10 0.08 0.08 −0.04 0.10
AV5Z 0.16
AV{T,Q} 0.21 0.05 0.14 0.36 −0.09 0.28
AV{Q,5} 0.42
AVTZ TightPNO (Dflt. TCutPNO = 10−7) 0.62 0.38 0.54 0.82 0.03 0.73
AVQZ 0.14 0.04 0.06 0.25 0.08 0.19
AV5Z 0.05
AV{T,Q} 0.21 0.23 0.31 0.13 0.12 0.24
AV{Q,5} 0.11

AVTZ TightPNO (TCutPNO=10‑{6,7}) 0.68 0.42 0.60 0.89 0.03 0.79
AVQZ 0.19 0.06 0.08 0.35 0.14 0.26
AV5Z 0.02
AV{T,Q} 0.25 0.33 0.39 0.10 0.22 0.30
AV{Q,5} 0.05
AVTZ VeryTightPNO 0.56 0.36 0.50 0.72 0.02 0.65
AVQZ 0.01
AV{T,Q} 0.25

DLPNO-CCSD(T1) AVTZ NormalPNO 0.74 0.70 0.91 0.63 −0.26 0.81
AVQZ 0.30 0.35 0.42 0.18 −0.18 0.34
AV5Z 0.24 0.30 0.36 0.11 −0.21 0.28
AV{T,Q}Z 0.13 0.11 0.10 0.17 −0.13 0.15
AV{Q,5}Z 0.24 0.25 0.30 0.18 −0.23 0.25
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Refitting of the DLPNO-based composite methods with
respect to DF-CCSD(T) level ACONF12 energies offered a
significantly better accuracy but with unphysical negative
coefficients (see Table 2).

(b) Revised reference conformer energies of n-hexadecane
and n-icosane conformers (i.e., the ACONF16 and
ACONF20 subsets):

In the nomenclature of Hansen and co-workers,24 the
conformer 0 is “all trans” and 00 is “hairpin”-like (see Figures 2
and 3 in ref 24 for illustration). As the chain grows longer,
eventual dispersion forces will favor a folded over a linear
structure. The “all trans” conformer is the lowest in energy for
n-dodecane, while the “hairpin” is clearly the global minimum
for n-icosane; n-hexadecane lies near the transition point.19

The HLC we have used to calculate the revised n-dodecane
conformer energies is even for them computationally quite
expensive and would become intractable for the larger species.
Hence, linear scaling localized coupled-cluster methods would
be attractive alternatives for HLC on top of the RI-MP2-F12/
CBS level n-hexadecane and n-icosane conformer energies. The
present study considers 22 such alternative HLCs (see Table
3). The LNO-based HLC, [LNO-CCSD(T) − LMP2]/
vTight/AV{Q,5}Z is the best in class, very closely followed
by five other options, HLC7, HLC8, HLC9, HLC13, and
HLC15.
Among these five alternative HLCs, the remarkable accuracy

of HLC9, HLC7, and HLC15 can be attributed to fortuitous
error compensation between [LCCSD-LMP2] and (T)
contributions. Two low-cost alternatives to HLC14 are
HLC13 and HLC8. With CBS extrapolation, DLPNO-
CCSD(T1)-based HLCs (i.e., HLC4 and HLC5) have the
largest deviations relative to the canonical reference data.
A number of HLCs only involve AVTZ basis sets; hence,

they may be directly compared with canonical [DF-CCSD(T)
− RI-MP2]/AVTZ (i.e., HLC1). We found that HLC16 has
only 0.009 kcal/mol mean absolute error, which is due to a
substantial error compensation between [CCSD-MP2] and

(T) contributions (see Table S2 in the Supporting
Information).
We finally selected [RI-MP2-F12/CBS + HLC14] for the

revised reference conformer energies of n-hexadecane and n-
icosane. (For the HLC energies of individual species, see Table
S3 in the Supporting Information.)
Our best estimates of the ACONFL conformer energies are

listed in Table 4. To summarize, the conformer energies of n-
dodecane were evaluated canonically using MP2-F12/cc-
pV{T,Q}Z-F12 + [CCSD(F12*) − MP2-F12]/cc-pVTZ-F12
+ (T)/aug-cc-pV{D,T}Z, while for the n-hexadecane and n-
icosane conformers, we employed canonical MP2-F12/cc-
pV{T,Q}Z-F12 + localized [LNO-CCSD(T) − LMP2]/
vTight/aug-ccPV{Q,5}Z. Differences between the revised
reference data and the original ACONFL reference conformer
energies can reach as positive as +0.60 kcal/mol and as
negative as −0.67 kcal/mol; moreover, for multiple n-icosane
conformers, the energetic ordering is upended.
For the ACONFL conformer energies employing HLC13

and HLC8, see Table S4 in the Supporting Information. [See
Table S5 in the Supporting Information for the ACONF16
conformer energies relative to the 00 (hairpin) conformer.]
(c) Performance of localized orbital coupled-cluster meth-

ods:
In this section, we assess the performance of LNO-

CCSD(T), PNO-LCCSD(T), and DLPNO-CCSD(T0), and
DLPNO-CCSD(T1) methods in combination with different
accuracy thresholds and basis sets. Table 5 summarizes the
MADs, MSDs, and root-mean-square deviations (RMSDs) of
different methods.
Increasing the basis set size for a given accuracy threshold

improves LNO-CCSD(T) accuracy relative to our revised
reference data. As long as only single basis sets are considered,
with MAD = 0.06 kcal/mol, LNO-CCSD(T,vTight)/AV5Z is
the best pick. Except for the “Normal” threshold, AV{Q,5}Z
extrapolated results have lower mean absolute error compared
to the respective AV{T,Q}Z energies. The excellent perform-
ance of LNO-CCSD(T,Normal)/AV{T,Q}Z (MAD = 0.05

Table 5. continued

MAD (kcal/mol)
MSD

ACONFL
RMSD

ACONFL

method details basis set threshold ACONFL ACONF12 ACONF16 ACONF20 (kcal/mol) (kcal/mol)

AVTZ TightPNO (TCutPNO=10‑6) 0.54 0.32 0.46 0.72 0.04 0.63
AVQZ 0.11 0.05 0.07 0.18 0.09 0.13
AV5Z 0.13
AV{T,Q}Z 0.28 0.29 0.37 0.20 0.13 0.31
AV{Q,5}Z 0.22
AVTZ TightPNO (dflt. TCutPNO = 10−7) 0.65 0.41 0.58 0.85 0.02 0.76
AVQZ 0.15 0.05 0.07 0.28 0.07 0.21
AV5Z 0.03
AV{T,Q}Z 0.18 0.20 0.27 0.10 0.11 0.21
AV{Q,5}Z 0.08
AVTZ TightPNO (TCutPNO=10‑{6,7}) 0.71 0.45 0.64 0.92 0.02 0.83
AVQZ 0.20 0.08 0.12 0.34 0.07 0.26
AV5Z 0.04
AV{T,Q}Z 0.14 0.16 0.22 0.06 0.10 0.17
AV{Q,5}Z 0.02
AVTZ VeryTightPNO 0.59 0.39 0.54 0.75 0.01 0.68
AVQZ 0.02
AV{T,Q}Z 0.23

aThe expression CPS{X,Y} refers to the extrapolation of TCutPNO to the complete PNO space limit using TCutPNO = 10−X and 10−Y, where Y = X+1.
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kcal/mol) is due to fortunate error compensation between the
localized orbital (LO) error and basis set incompleteness error
(BSIE). Increasing the chain length of n-alkane also increases
the MAD from the reference conformer energies accordingly
(see Table 5). With a mean absolute error of 0.04 kcal/mol,
LNO-CCSD(T,Tight)/AV{Q,5}Z is the best pick among the
standard LNO-CCSD(T) methods tested with different basis
sets and accuracy thresholds. However, if we consider the
statistical uncertainty of the reference energies, the perform-
ance of LNO-CCSD(T,Tight)/AV{Q,5}Z, LNO-CCSD-
(T,vTight)/AV{Q,5}Z, and LNO-CCSD(T,vTight)/AV5Z is
actually indistinguishable. While employing the AVTZ basis set
for calculation, tightening the accuracy cutoffs from “vTight” to
“vvTight” has no additional advantage.
With the “Default” accuracy threshold and AVTZ basis set,

PNO-LCCSD(T) performs remarkably well (0.05 kcal/mol)
owing to fortunate error compensation between LO error and
BSIE. Increasing the basis set size from AVTZ to AVQZ
adversely affects the accuracy (MAD increases from 0.05 to
0.11 kcal/mol) as LO error dominates with a larger basis set.
With the “Tight” setting, increasing the basis set size from
AVTZ to AVQZ has no significant influence on PNO-
LCCSD(T) performance when the full ACONFL is consid-
ered. Closer scrutiny suggests that using a larger basis set
degrades the performance of ACONF12 and ACONF16 but
marginally improves the accuracy of ACONF20 (see Table 5).
Due to the substantial computational cost, we were only able
to calculate PNO-LCCSD(T)/AV5Z level conformer energies
for ACONF12 and ACONF16 subsets with “Default” and
ACONF12 subsets with “Tight” cutoffs. Either with the
“Default” or “Tight” threshold, PNO-LCCSD(T)/AV5Z and
PNO-LCCSD(T)/AVQZ offer comparable performance.
Irrespective of the choice of accuracy settings, CBS
extrapolation adversely affects the performance of standard
PNO-LCCSD(T) methods.
Turning to the DLPNO-CCSD(T1) with the “NormalPNO”

setting, increasing the basis set size improves accuracy as it
should (see Table 5). A two-point CBS extrapolation from the
AVTZ and AVQZ level conformer energies improves accuracy
further (MAD = 0.13 kcal/mol). However, a {Q,5}
extrapolation only offers accuracy similar to DLPNO-CCSD-
(T1)/AV5Z. With the “TightPNO” threshold and AVQZ basis
set, tightening the TCutPNO parameter from 10−6 to 10−7 only
marginally degrades their performance. Due to the huge I/O,
bandwidth and storage requirements, we were only able to
calculate the ACONF12 conformer energies at DLPNO-
CCSD(T1)/AV5Z and DLPNO-CCSD(T1)/AVQZ levels
with “TightPNO” and “VeryTightPNO” settings, respectively.
With the default “TightPNO” (i.e., TCutPNO = 10−7) DLPNO-
CCSD(T1)/AV{T,Q}Z and DLPNO-CCSD(T1)/AVQZ offer
similar accuracy, which is due to a significant reduction of
MAD for ACONF20 while using the prior method (see Table
5). With the default TightPNO and TightPNO at the complete
PNO space limit (i.e., TCutPNO = 10‑{6,7}), increasing the basis
set size from AVQZ to AV5Z marginally improves the accuracy
for n-dodecane conformers. Using a {T,Q} CBS extrapolation
and CPS extrapolation from the TCutPNO = 10−6 and 10−7

energies, DLPNO-CCSD(T1)/TightPNO can achieve 0.14
kcal/mol accuracy, which is in the territory of LNO-CCSD(T,
Tight)/AV5Z and LNO-CCSD(T, vTight)/AVQZ. The
CPS{6,7} extrapolation with a two-point CBS extrapolation
can significantly improve the performance of the ACONF20
subset.

From the MAD values listed in Table 5, it is clear that for
the 12 n-dodecane conformers, the performance improvement
from “TightPNO” to “VeryTightPNO” is not statistically
significant.
Now, if one is limited to the I/O, storage, and bandwidth

requirements of the DLPNO-CCSD(T1) method, another
alternative is to use DLPNO-CCSD(T0) instead. At any
specific accuracy threshold, the performances of DLPNO-
CCSD(T1) and DLPNO-CCSD(T0) are comparable; this is
not surprising as the conformers of longer n-alkanes do not
have significant type A static correlation.77 The only exception
to the above trend is TightPNO/AV{T,Q}Z with CPS, where
DLPNO-CCSD(T1) and DLPNO-CCSD(T0) have 0.14 and
0.25 kcal/mol MADs, respectively. For the ACONF16 and
ACONF12 subsets, DLPNO-CCSD(T1, TightPNO)/AV-
{T,Q}Z/CPS significantly outperforms DLPNO-CCSD(T0,
TightPNO)/AV{T,Q}Z/CPS (MAD values decrease from
0.33 and 0.39 to 0.16 and 0.22 kcal/mol, respectively).
For organometallic barrier heights, Iron and Janes41,42 and

later Efremenko and Martin39 found that the (T1) − (T0)
difference is only weakly sensitive to the basis set size. Hence,
in an earlier study on the S66x8 set, we considered a two-tier
composite method, DLPNO-CCSD(T0)/haVQZ +
c1[DLPNO-CCSD(T0)/haVQZ − DLPNO-CCSD(T0)/
haVTZ] + c2[DLPNO-CCSD(T1)/haVTZ − DLPNO-CCSD-
(T0)/haVTZ], where the CBS extrapolation is carried out at
the DLPNO-CCSD(T0) level, and the (T1) − (T0) difference
is evaluated in a smaller basis set. For the counterpoise
uncorrected noncovalent interaction energies, the optimized
prefactors were {c1,c2} = {0.61, 3.33}. With the dataset in
hand, we found that (T0)/AVQZ + 0.61[(T0)/AVQZ − (T0)/
AVTZ] + 3.33[(T1)/AVTZ − (T0)/AVTZ] is only marginally
better (MAD = 0.10 kcal/mol) than DLPNO-CCSD(T0)/
AVQZ and DLPNO-CCSD(T1)/AVQZ with the “TightPNO”
setting (see Tables 5 and Table S6 in the Supporting
Information). As earlier, the anomalous values of the
coefficients seem hard to justify.
Additionally, we also considered benchmarking the LNO-,

PNO-, and DLPNO-based composite methods optimized for
the counterpoise uncorrected (or “raw”) S66x8 noncovalent
interactions (see ref 50 for further details). The RMSD, MAD,
and MSD statistics of these methods for ACONFL are listed in
Table S6. While using the coefficients from ref 50, none of the
composite schemes outperformed their respective standard
methods. On the other hand, optimizing the coefficients of the
localized orbital composite methods with respect to the revised
ACONFL reference data significantly improved their perform-
ance. However, once again the new optimized prefactors seem
unphysical sometimes, for example, for the LNO-based
Tight{T,Q} + c1[vTight − Tight]/T method, we got the
lowest MAD with c1 = −1.47 (see Table S6 in the Supporting
Information). Hence, we are reluctant to recommend their use.
As a parenthetical remark, for the RMSD, MAD, and MSD

statistics of different localized orbital methods relative to the
reference conformer energies using HLC8 instead of HLC14
for the ACONF16 and ACONF20 subsets, see Table S7 in the
Supporting Information.

(d) Explicitly correlated localized orbital coupled-cluster
methods:

In this section, we assess the performance of explicitly
correlated PNO-LCCSD(T)-F12b and DLPNO-CCSD(T1)-
F12 methods in combination with different accuracy thresh-
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olds and basis sets. The MADs, MSDs, and RMSDs of these
methods are listed in Table 6. Following the recommendation
of Peterson et al.,75 the (T) components of the PNO-
LCCSD(T)-F12b and DLPNO-CCSD(T1)-F12 energies are
scaled by the global scale factors 1.1413, 1.0527, and 1.0232,
respectively, for the VDZ-F12, VTZ-F12, and VQZ-F12 basis
sets.
With “Default” cutoffs, PNO-LCCSD(T)-F12b/VDZ-F12

and PNO-LCCSD(T)-F12b/VTZ-F12 offer similar accuracy,
which is marginally improved by using (T)-scaling (see Table
6). With the “Tight” setting, using the VTZ-F12 basis set, we
obtained marginally better performance than VDZ-F12.
However, (T)-scaling closed that gap between PNO-LCCSD-
(Ts)-F12b/Tight/VDZ-F12 and PNO-LCCSD(Ts)-F12b/
Tight/VTZ-F12. PNO-LCCSD(Ts)-F12b/VDZ-F12 offers
performance similar to PNO-LCCSD(T)/AVTZ (MAD =
0.09 kcal/mol) when “Tight” cutoffs are used. Interestingly
enough, tightening the threshold from “Default” to “Tight”
does not offer any noticeable advantage for PNO-LCCSD(Ts)-
F12b/VDZ-F12. The “Default” and “Tight” settings yield
results of comparable quality for ACONF16 with the VDZ-F12
basis set. However, for the ACONF20 set, we get better
performance with a tighter threshold.
Increasing the basis set size from VDZ-F12 to VTZ-F12

does more harm than good for DLPNO-CCSD(T1)-F12 when
using the “NormalPNO” setting, which is an indication of

fortuitous error compensation between errors due to the use of
loose accuracy cutoffs and basis set incompleteness. As
expected, tightening the accuracy threshold from NormalPNO
to TightPNO improves the accuracy of DLPNO-CCSD(T1)-
F12/VDZ-F12, which gets even better by using the
“VeryTightPNO” setting (see Table 6). Increasing the basis
set size from VDZ-F12 to VTZ-F12 significantly worsens the
performance of DLPNO-CCSD(T1)-F12 when the “Normal-
PNO” threshold is used. However, with “TightPNO” cutoffs,
the MAD difference between VDZ-F12 and VTZ-F12 basis
sets is statistically insignificant. From the MADs listed in Table
6, it is clear that VDZ-F12 reaches the basis set limit with the
“TightPNO” setting.
With the “NormalPNO” settings, the performance of

explicitly correlated DLPNO-CCSD(T1)-F12/VDZ-F12 is
very close to standard DLPNO-CCSD(T1)/AV{T,Q}Z. With
an MAD of 0.04 kcal/mol, in fact, DLPNO-CCSD(T1)-F12/
VeryTightPNO/VDZ-F12 outperforms all the standard
DLPNO-CCSD(T1) tested in the present study.
(e) Prototypical timing comparison:
In this section, we compare how costly different localized

coupled-cluster methods are relative to DF-CCSD(T). We
have considered one n-dodecane conformer (to be more
specific, conformer 0). For the standard and explicitly
correlated calculations, the aug-cc-pVTZ basis set was
employed throughout. All the calculations were carried out

Table 6. Performance of Explicitly Correlated PNO-LCCSD(T)-F12b, PNO-LCCSD(Ts)-F12b, DLPNO-CCSD(T1)-F12, and
DLPNO-CCSD(T1s)-F12 Methods with Respect to the Revised ACONFL Reference Dataa

MAD (kcal/mol)

method threshold basis set ACONFL ACONF12 ACONF16 ACONF20
MSD ACONFL

(kcal/mol)
RMSD ACONFL

(kcal/mol)

PNO-LCCSD(T)-F12b Default VDZ-F12 0.18 0.12 0.16 0.24 −0.02 0.21
VTZ-F12 0.16 0.15 0.19 0.16 0.04 0.18
VQZ-F12 0.10

Tight VDZ-F12 0.18 0.15 0.19 0.18 0.03 0.19
VTZ-F12 0.13 0.12 0.15 0.12 0.04 0.14

PNO-LCCSD(Ts)-F12b Default VDZ-F12 0.11 0.06 0.08 0.17 −0.03 0.13
VTZ-F12 0.13 0.12 0.15 0.12 0.04 0.14
VQZ-F12 0.09

Tight VDZ-F12 0.10 0.08 0.11 0.09 0.02 0.11
VTZ-F12 0.10 0.09 0.12 0.09 0.03 0.11

DLPNO-CCSD(T1)-F12 NormalPNO VDZ-F12 0.15 0.09 0.09 0.24 −0.15 0.18
VTZ-F12 0.36 0.27 0.40 0.39 −0.35 0.57
VQZ-F12 0.34

TightPNO VDZ-F12 0.08 0.04 0.07 0.11 −0.02 0.10
VTZ-F12 0.12 0.06 0.07 0.19 0.03 0.19
VQZ-F12 0.03

VeryTightPNO VDZ-F12 0.04 0.04 0.05 0.04 0.01 0.05
VTZ-F12 0.06
VQZ-F12 0.07

DLPNO-CCSD(T1s)-F12 NormalPNO VDZ-F12 0.18 0.14 0.16 0.23 −0.18 0.20
VTZ-F12 0.38 0.29 0.43 0.39 −0.37 0.58
VQZ-F12 0.35

TightPNO VDZ-F12 0.16 0.11 0.15 0.18 −0.03 0.18
VTZ-F12 0.12 0.04 0.06 0.20 0.03 0.18
VQZ-F12 0.02

VeryTightPNO VDZ-F12 0.05 0.03 0.04 0.07 0.00 0.06
VTZ-F12 0.03
VQZ-F12 0.06

aFollowing ref 75, the (T) terms of PNO-LCCSD(T)-F12b and DLPNO-CCSD(T1)-F12 were scaled by 1.1413, 1.0527, and 1.0232, respectively,
for the VDZ-F12, VTZ-F12, and VQZ-F12 basis sets.
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on 16 cores of a node with two Intel(R) Xeon(R) Gold 5320
CPUs (2.20GHz).
Among the standard localized coupled-cluster methods,

DLPNO-CCSD(T1) with a VeryTightPNO setting (i.e.,
TightPNO with TCutPNO = 10−8, TCutMKN = 10−4, and TCutPairs
= 10−6) is the most expensive one, at 1/8th the cost of DF-
CCSD(T). For the TightPNO setting, loosening the TCutPNO
one notch from the default value (i.e., 10−7) reduces the cost of
DLPNO-CCSD(T1) approximately by half. For LNO-CCSD-
(T), tightening the accuracy thresholds from Normal to Tight,
Tight to vTight, and vTight to vvTight increases the cost by
2.5, 3.0, and 2.8 times, respectively. The LNO-CCSD(T)
calculations with a vvTight threshold are computationally twice
as expensive as standard DLPNO-CCSD(T1,TightPNO).
LNO-CCSD(T) with the Normal threshold is the least
expensive localized coupled-cluster method among the
methods listed in Table 7. For PNO-LCCSD(T), the total

wall time ratio for “Default” and “Tight” thresholds is 1:1.63.
With the “Tight” setting, PNO-LCCSD(T) is approximately as
expensive as DLPNO-CCSD(T1, NormalPNO).
For PNO-LCCSD(T)-F12b, the Default/Tight ratio for

total wall time is 1:2.2. With a “Tight” threshold, explicitly
correlated PNO-LCCSD(T)-F12b is just 1.5 times more
expensive than standard PNO-LCCSD(T). On the other hand,
DLNO-CCSD(T1)-F12 calculations are 3.2, 2.0, and 1.4 times
more expensive than regular DLPNO-CCSD(T1) with
“NormalPNO”, “TightPNO”, and “VeryTightPNO” cutoffs,
respectively.
(f) A few remarks on the performance of more approximate

methods:
In this subsection, we try to answer the question: to what

extent do the new reference energies of ACONFL affect the
performance of DFT, SQM, and FF methods?
In ref 24, Hansen and co-workers evaluated the performance

of a variety of such methods. Hence, to save us time, we have

extracted the conformer energies from the Supporting
Information of ref 24, spliced in our new reference data, and
compared the statistics of different DFT, SQM, and FF
methods (see the Excel workbook in the Supporting
Information). On top of that, we have considered a few
additional double hybrid functionals, for example, revDSD-
PBEP86-D3BJ,68 revDSD-PBEP86-D4,68 ωB97M(2),78 and
dRPA-based fifth rung functionals.71,72,79 The first three
functionals were the best performers in the GMTKN55
general main-group thermochemistry, kinetics, and non-
covalent interactions, 55 problem types37) benchmark,68

while dispersion-corrected dRPA-based functionals performed
remarkably well for S66 and S66x8 noncovalent interac-
tions.50,80

The mean absolute error of the widely used molecular
mechanics FFs, UFF81 and MMFF94,82,83 was marginally
reduced from 2.91 and 3.41 to 2.87 and 3.37 kcal/mol,
respectively. Considering the fact that the average conformer
energy of ACONFL is 4.56 kcal/mol, these errors remain
unacceptable. With MAD = 0.40 kcal/mol, GFN-FF84, (where
GFN stands for geometries, frequencies, and noncovalent
interactions) emerges as the best performer among all the FFs,
followed by OpenFF-1.0.085 (MAD = 0.58 kcal/mol).
However, it should be mentioned that the surprisingly accurate
performance of simple HF with D4 dispersion correction, 0.14
kcal/mol, is now reduced to merely a good one, 0.41 kcal/mol.
Now, among the SQM methods, the performance of the best

pick, PM6-DH4,86 gets marginally better when we employ the
revised reference energies (MAD goes down from 0.55 to 0.48
kcal/mol). However, for PM7,87 this improvement is a bit
more prominent.
Finally, we will focus on the performance of DFT methods

in light of the presently revised reference data. The mean
absolute errors of PBE-D4,88−90 TPSS-D3BJ,91,92 and B97M-
D493,94 decrease from 0.33, 0.42, and 0.46 kcal/mol to 0.10,
0.28, and 0.17 kcal/mol, respectively. On the other hand, for
SCAN-D3BJ95 and r2SCAN-D3BJ,96−98 the MAD values
increase from 0.21 to 0.34 kcal/mol and 0.25 to 0.34 kcal/
mol, respectively. With D3(BJ),92,99 D4,88,100 or VV10101

dispersion correction, B3LYP102 and PBE088,103,104 perform
significantly better now. With MAD = 0.07 kcal/mol, PBE0-
VV10 is the best pick among the hybrid functionals. That
being said, the mean absolute errors of ωB97M-D3BJ105 and
ωB97M-D494 decrease from 0.39 and 0.32 to 0.12 and 0.20
kcal/mol, respectively.
With D4 dispersion correction, the excellent performance of

B2PLYP106 stays intact. However, the mean absolute error of
PWPB95107 with D3BJ and D4 improves from 0.35 each to
0.13 and 0.16 kcal/mol, respectively. Performance of PWPB95-
D3BJ, ωB97M(2),78 and the lower-rung ωB97M-D3BJ
functionals are statistically indistinguishable (see Table 8).
As we saw for the GMTKN55 benchmark,68 Head-Gordon’s
16-parameter ωB97M(2) marginally outperforms our six-
parameter revDSD-PBEP86-D3BJ for longer n-alkane con-
former energies.
Let us switch our focus to the dRPA-based double hybrid

functionals. As all the systems of the ACONFL set are closed-
shell, Kaĺlay’s dRPA7571 and SCS-dRPA7579 are equivalent. As
Brauer et al.80 found for the S66x8 noncovalent interactions,
adding an empirical dispersion correction significantly
improved the performance of (SCS-)dRPA75. (With the
def2-QZVPP basis set, the MAD values of dRPA75, dRPA75-
D3BJ, and dRPA75-D4 are 0.84, 0.04, and 0.14 kcal/mol,

Table 7. Total Wall Time (hr) for an n-Dodecane
Conformer with DF-CCSD(T) and Different Localized
Coupled-Cluster Methods Using Different Accuracy
Thresholdsa

method threshold
wall time

(h)

DF-CCSD(T) 74.82
DLPNO-CCSD(T1) NormalPNO 0.83

TightPNO (TCutPNO = 10−6) 1.16
TightPNO
(default or TCutPNO = 10−7)

2.29

VeryTightPNO 9.25
LNO-CCSD(T) Normal 0.23

Tight 0.57
vTight 1.69
vvTight 4.66

PNO-CCSD(T) Default 0.46
Tight 0.75

PNO-LCCSD(T)-F12b Default 0.52
Tight 1.14

DLPNO-CCSD(T1)-F12 NormalPNO 2.69
TightPNO 4.69
VeryTightPNO 12.58

aThe aug-cc-pVTZ basis set and 16 Intel(R) Xeon(R) Gold 5320
CPU (2.20GHz) cores were used throughout.
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respectively.) The main difference between Kaĺlay’s dRPA75
and our DSD-PBEdRPA75

72 is that the former functional does
not have any semi-local correlation in the final energy
expression, but the latter one contains a small percentage

(∼10%) of PBE correlation. With D3BJ dispersion corrections,
dRPA75 and DSD-PBEdRPA75 offer the lowest MADs among
all the double hybrid DFT methods tested. With a mean
absolute error of 0.04 kcal/mol, these two double hybrids are

Table 8. Performance of Different Double Hybrid Functionals with Respect to the Revised Reference Data for ACONFLa

MAD (kcal/mol) MSD ACONFL RMSD ACONFL

methods basis set ACONFL ACONF12 ACONF16 ACONF20 (kcal/mol) (kcal/mol)

ωB97M-D3BJ def2-QZVPP 0.12 0.19 0.13 0.07 −0.10 0.14
B2PLYP-D3BJ def2-QZVPP 0.21 0.17 0.22 0.22 0.06 0.22
B2PLYP-D4 def2-QZVPP 0.16 0.11 0.16 0.20 0.04 0.18
PWPB95-D3BJ def2-QZVPP 0.13 0.16 0.11 0.13 −0.11 0.15
PWPB95-D4 def2-QZVPP 0.16 0.21 0.13 0.16 −0.11 0.19
DSD-BLYP-D3BJ def2-QZVPP 0.27 0.19 0.25 0.34 0.00 0.32
DSD-BLYP-D4 def2-QZVPP 0.22 0.19 0.24 0.22 0.08 0.24
revDSD-BLYP-D4 def2-QZVPP 0.25 0.24 0.27 0.24 0.11 0.29
HF-D4 def2-QZVPP 0.41 0.24 0.33 0.58 −0.05 0.49

revDSD-PBEP86-D4 def2-QZVPP 0.26 0.18 0.24 0.32 0.01 0.30
revDOD-PBEP86-D4 def2-QZVPP 0.26 0.16 0.23 0.34 −0.01 0.31
revDSD-PBEP86-D3BJ def2-QZVPP 0.19 0.16 0.20 0.19 0.04 0.21
ωB97M(2) def2-QZVPP 0.13 0.11 0.18 0.11 0.05 0.15
dRPA75 def2-QZVPP 0.84 0.66 0.88 0.90 0.10 0.93

def2-TZVPP 0.49 0.32 0.44 0.63 −0.04 0.56
def2-{T,Q}ZVPP 1.02 0.84 1.11 1.06 0.00 1.13

dRPA75-D3BJ def2-QZVPP 0.04 0.02 0.04 0.06 0.03 0.05
def2-TZVPP 0.37 0.34 0.41 0.37 −0.11 0.41
def2-{T,Q}ZVPP 0.18 0.18 0.26 0.12 0.00 0.21

dRPA75-D4 def2-QZVPP 0.14 0.07 0.11 0.21 −0.04 0.17
def2-TZVPP 0.26 0.28 0.33 0.19 −0.18 0.29
def2-{T,Q}ZVPP 0.32 0.24 0.34 0.35 0.00 0.36

DSD-PBEdRPA75-D3BJ def2-QZVPP 0.04 0.02 0.06 0.03 0.03 0.05
def2-TZVPP 0.31 0.28 0.34 0.29 −0.10 0.33
def2-{T,Q}ZVPP 0.19 0.18 0.26 0.14 0.00 0.21

DSD-PBEdRPA75-D4 def2-QZVPP 0.21 0.10 0.16 0.33 −0.06 0.27
def2-TZVPP 0.20 0.21 0.24 0.16 −0.19 0.21
def2-{T,Q}ZVPP 0.38 0.26 0.36 0.45 0.00 0.43

DSD-PBEP86dRPA75-D3BJ def2-QZVPP 0.08 0.06 0.09 0.09 0.08 0.09
def2-TZVPP 0.28 0.22 0.27 0.33 −0.03 0.32
def2-{T,Q}ZVPP 0.19 0.20 0.28 0.11 0.00 0.22

DSD-PBEP86dRPA75-D4 def2-QZVPP 0.19 0.12 0.18 0.24 −0.01 0.22
def2-TZVPP 0.14 0.16 0.18 0.10 −0.12 0.16
def2-{T,Q}ZVPP 0.34 0.27 0.37 0.36 0.00 0.38

aEverything below the blank row is calculated by ourselves in the present study. For the statistics of the functionals above the blank row, we have
used the conformer energies reported in the Supporting Information of ref 24.

Table 9. Performance of HF- and KS-DFT Functionals for Large and Medium Sized n-Alkane Conformers (i.e., ACONFL and
ACONF14 Sets)

ACONFL (i.e., CnH2n+2; n = 12, 16, and 20)

MAD (kcal/mol) ACONF (i.e., CnH2n+2; n = 2−7)

methods full ACONF12 ACONF16 ACONF20
MSD ACONFL

(kcal/mol)
RMSD ACONFL

(kcal/mol)
MAD

(kcal/mol)
MSD

(kcal/mol)
RMSD

(kcal/mol)

PBEa 2.63 1.99 2.55 3.07 0.15 2.94 0.59 0.59 0.67
HF-PBE 3.11 2.44 3.13 3.49 0.31 3.46 0.77 0.77 0.85
PBE-D4a 0.10 0.08 0.09 0.12 −0.07 0.12 0.13 0.13 0.19
HF-PBE-D4 0.07 0.08 0.07 0.08 −0.03 0.09 0.07 −0.05 0.09
PBE0a 2.60 1.96 2.54 3.02 0.17 2.91 0.62 0.62 0.70
HF-PBE0 2.88 2.21 2.87 3.27 0.26 3.21 0.72 0.72 0.81
PBE0-D4a 0.08 0.07 0.09 0.09 0.04 0.10 0.18 0.18 0.21
HF-PBE0-D4 0.12 0.07 0.11 0.16 0.03 0.14 0.04 0.04 0.04

aThe conformer energies are taken from the Supporting Information of ref 24.
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marginally better than DSD-PBEP86dRPA75-D3BJ.72 For
DSD-PBEP86dRPA75-D4, due to fortunate error compensa-
tion, we obtain a marginally better MAD with def2-TZVPP
than using a larger def2-QZVPP basis set. Unlike what we
observed for the GMTKN55 benchmark,72 a CBS extrap-
olation from the def2-TZVPP108 and def2-QZVPP108 con-
former energies is detrimental to the performance of the
dRPA-based double hybrids (see Table 8).
The errors in DFT calculations can be grouped into two

camps: imperfections in the functional itself and errors arising
from the self-consistent density evaluated with an imperfect
functional. In recent years, Sim, Burke, and co-workers109 have
established the theory of density-corrected density functional
theory (DC-DFT) to minimize the second class of errors.
They propose a straightforward solution using converged
Hartree−Fock densities (HF-DFT) instead of self-consistent
ones for the final evaluation of the exchange−correlation (XC)
functional. (For more details on DC-DFT, see the review
article by Wasserman et al.110 and a recent paper in questions-
and-answers format by Song et al.111).
In a previous study,112 we found that for the unbranched n-

alkane conformers (n = 2−7),14 using HF densities instead of
self-consistent KS densities can significantly improve the
performance of pure and hybrid PBE-D4 functionals. However,
without dispersion correction, the trend is the opposite. Just
for the sake of completeness, with the present dataset in hand,
we have tested whether the same is true for the longer n-alkane
conformers (see Table 9). Without a dispersion correction, we
find that self-consistent KS densities are preferred over HF
ones. On the other hand, with the D4 dispersion correction,
the performance of HF-PBE-D4112 and HF-PBE0-D4112 is
statistically indistinguishable from that of PBE-D4 and PBE0-
D4, respectively.

4. CONCLUSIONS
We have successfully calculated the “silver” standard conformer
energies of the ACONF12 set, which are very close to the (T)-
scaled CCSD(T)-(F12*)/VTZ-F12 energies. Relative to the
presently revised reference conformer energies of n-dodecane,
DLPNO-CCSD(T1,VeryTightPNO)/CBS (i.e., the reference
energies of n-dodecane conformers used by Ehlert et al.24) has
0.25 kcal/mol mean absolute error. Searching for an alternative
HLC based on localized orbital coupled-cluster methods, we
found that [LNO-CCSD(T) − LMP2]/vTight/AV{Q,5}Z
(i.e., HLC14) can replace the more expensive [CCSD(F12*)
− MP2-F12]/VTZ-F12 and (T)/AV{D,T}Z without notice-
ably sacrificing accuracy. Hence, we have used HLC14 to
calculate the reference conformer energies of the ACONF16
and ACONF20 subsets. Relative to the canonical DF-
CCSD(T) conformer energies, tightening the accuracy thresh-
old of localized coupled-cluster methods improves their
performance. Using an LNO-based composite method, vTight
+ 0.5[vTight-Tight] (see ref 31) and extrapolation of the
DLPNO-CCSD(T1,TightPNO) conformer energies to the
complete PNO space limit from the TCutPNO = {10−6,10−7}
energies improves the accuracy significantly.
Finally, from an extensive survey of different pure and

composite localized coupled-cluster methods for conforma-
tional energies of longer n-alkane chains, we can conclude the
following:

• Increasing the basis set size and/or tightening the
accuracy threshold improves the accuracy of the pure

LNO-CCSD(T) methods. With the “Normal” setting,
the AV{T,Q}Z extrapolation performs better than the
more expensive AV{Q,5}Z, but the trend is the opposite
when we use the “Tight” or “vTight” setting. With the
“Tight” setting, LNO-CCSD(T)/AV{Q,5}Z is the best
performer among the LNO-based methods tested;
hence, the composite methods based on Tight{Q,5}
have no additional advantage over the pure method.

• For a certain threshold, increasing the basis set size from
AVTZ to AVQZ helps improve the performance of
DLPNO-CCSD(T1) significantly. Two-point CBS ex-
trapolation does more harm than good for DLPNO-
CCSD(T1, TightPNO) when we use TCutPNO = 10−6.
With a MAD of 0.10 kcal/mol, the low-cost three-tier
composite scheme, (T0)TightPNO/AVQZ + 0.61[(T0)-
TightPNO/AVQZ − (T0)TightPNO/AVTZ] + 3.33-
[(T1)TightPNO/AVTZ − (T0)TightPNO/AVTZ], is
only marginally better than standard DLPNO-CCSD-
(T0, TightPNO)/AVQZ and DLPNO-CCSD(T1,
TightPNO)/AVQZ.

• For a specific accuracy threshold and basis set
combination, performance of DLPNO-CCSD(T0) and
DLPNO-CCSD(T1) is comparable to each other, which
is not surprising because none of the conformers of the
ACONFL set has significant type A static correlation.77

• Employing our previously proposed50 composite
schemes does not offer any advantage over the standard
localized orbital methods.

Even with the VDZ-F12 basis set, results of the explicitly
correlated PNO-LCCSD(T)-F12b and DLPNO-CCSD(T1)-
F12 are pretty impressive. With “Tight” accuracy cutoffs,
explicitly correlated PNO-LCCSD(Ts)-F12b/VDZ-F12 offers
accuracy comparable to standard PNO-LCCSD(T)/AVTZ.
Among all the explicitly correlated localized orbital methods
tested, DLPNO-CCSD(T1)-F12/VDZ-F12 with “VeryTightP-
NO” is the best pick (MAD = 0.04 kcal/mol), which is better
than any standard DLPNO-CCSD(T1) considered in the
present study.
When analyzing the ΔMAD values between old and new

reference data, it should be kept in mind that the MAD
between the two reference sets themselves is 0.31 kcal/mol.
(The latter will also be an upper limit for ΔMAD.) Hence, for
methods where the MAD already was several times larger than
0.31 kcal/mol, the choice of reference data will not affect any
conclusions as to the suitability of the said methods�but for
approaches with an MAD comparable to or smaller than 0.31
kcal/mol, the choice of reference set may upend some
conclusions.
For all dispersion-uncorrected DFT functionals tested in the

present study, the MAD value uniformly increases by 0.30
kcal/mol�but as they already perform so poorly, this is not an
issue. That being said, for HF-D4, MAD increases nontrivially
from 0.14 to 0.41 kcal/mol when substituting the present
reference data, while r2SCAN-VV10, r2SCANh-VV10,113 and
r2SCAN0-VV10113 see their MADs double from
{0.18,0.18,0.17} to {0.35,0.34,0.34} kcal/mol. On the other
hand, for ωB97X-V114 and ωB97M-V,69 the mean absolute
errors are more than halved from 0.47 to 0.19 and from 0.54 to
0.24 kcal/mol, respectively.
With the new reference data, the performance of Head-

Gordon’s combinatorially optimized, range-separated double
hybrid ωB97M(2) and Grimme’s PWPB95-D3BJ are statisti-
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cally indistinguishable (MAD = 0.13 kcal/mol for both)�this
would not have been the case if the old reference data were
used (0.18 and 0.35 kcal/mol, respectively).
The MADs of our revDSD-PBEP86-D4 and revDOD-

PBEP86-D4 functionals increase from 0.06 and 0.07 kcal/mol
versus the old reference to (both) 0.26 kcal/mol versus the
new reference. With the D3BJ dispersion correction, the
dRPA-based double hybrid functionals, DSD-PBEdRPA75-
D3(BJ) and dRPA75-D3BJ, are the two best-performing
double hybrids (both MAD = 0.04 kcal/mol) against the
new reference set, but this would not have been the case for
the old reference (0.29 and 0.32 kcal/mol, respectively).
Using the AVTZ basis set, we found that localized orbital

coupled-cluster methods are 2 orders of magnitude cheaper
than the density-fitted canonical CCSD(T) for the n-dodecane
conformers. With the “VeryTightPNO” accuracy setting,
DLPNO-CCSD(T1) is twice as expensive as LNO-CCSD-
(T,vvTight). However, for larger systems, one will start
witnessing the formation of domains that may make the
DLPNO-based methods cheaper than both LNO-CCSD(T)
and PNO-CCSD(T).
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