TIDAL DISRUPTION OF MAIN SEQUENCE STARS INDUCED BY MASSIVE BLACK HOLE BINARIES

Alberto Sesana X. Chen, P. Madau, F. Liu, F. Haardt

Rehovot, 08/12/2009

OUTLINE

> The essential ingredients: MBHBs and dense stellar cusps

> Three body scattering experiments

> Hybrid model: enhanced tidal disruption rates of main sequence stars

> Don't mess with GR: Kozai vs Einstein

> Numbers and observational relevance

Structure formation in a nutshell

10 10 g 9 og M_∰∕M_© gol M_@∕M_☉ 8 Ellipticols Bulges Pseudobulges 6 -16 -18 -20 -22 1.8 2.2 2.6 -14 2.0 2.4 $\mathsf{M}_{\mathsf{B},\mathsf{bulge}}$ log $\sigma_{\rm e}$ (km s⁻¹)

Ferrarese & Merritt 2000, Gebhardt et al. 2000

Volonteri Haardt & Madau 2003

Structure formation in a nutshell

Stellar cusps: theory

A collisional system around a massive object has a power-law steady state solution $\rho \propto r^{-7/4}$ (Bahcall & Wolf 1977)

Strong mass segregation cause the more massive objects to form even steeper cusps (Alexander & Hopman 2009) The growth of a massive object in a stellar core produces a steep power-law cusp $\rho \propto r^{-\gamma}$ with $1.5 < \gamma < 2.5$ (Young 1980)

Stellar cusps: observations

Collisional nuclei ($T_{rel} < T_{Hubble}$) are expected to host steep cusps in their centres. Should be common in spirals and in systems with $M_{BH} < 10^7 M_{\odot}$

Difficult to detect. Lack of resolution. MBH sphere of influence resolved for a handful of galaxies out to the Virgo cluster. But *cores seem to be common*.

MW: presence of a cusp now into question (Schoedel et al. 2009)

M32 shows a power law profile down to the resolution limit (Lauer et al. 1995)

MBHB formation in a nutshell

1. dynamical friction (Lacey & Cole 1993, Colpi et al. 2000)

- from the interaction between the DM halos to the formation of the BH binary
- determined by the global distribution of matter
- efficient only for major mergers against mass stripping

2. binary hardening (Quinlan 1996, Miloslavljevic & Merritt 2001)

- 3 bodies interactions between the binary and the surrounding stars
- •the binding energy of the BHs is larger than the thermal energy of the stars
- the SMBHs create a *stellar density core ejecting the background stars*

3. emission of gravitational waves (Peters 1964)

- takes over at subparsec scales
- Ieads the binary to coalescence

<u>Length scales</u>

Dynamical friction quickly drive the secondary hole down to a separation where the mass in stars enclosed in its orbit is of the order of its own mass

Matsubayashi et al. 2007

The cusp is modelled as a double power-law normalized to the isothermal sphere outside the radius of influence of M_1 . This defines the lengthscale of the system

$$\rho_*(r) = \frac{\sigma_*^2}{2\pi G r^2}$$
$$\rho(r) = \rho_0 \left(\frac{r}{r_0}\right)^{-\gamma}$$
$$r_0 = (3 - \gamma) \frac{GM_1}{\sigma^2}$$

The presence of a tidal disruption radius breaks the scale-freedom of the 3-body integration

For a BH of mass M_1 embedded in a cusp with slope normalized to a standard isothermal sphere outside its radius of influence we have

$$egin{array}{r_{
m inf}} &= & (3-\gamma) rac{GM_1}{\sigma_*^2} \simeq 4.6 ~{
m pc} ~(3-\gamma) M_7 \sigma_{
m 100}^{-2}, \ a_0 &= & q^{1/(3-\gamma)} r_{
m inf}, \end{array}$$

The tidal disruption radius is defined as

$$egin{array}{r_t} r_t = r_* \left(rac{M_{
m BH}}{M_*}
ight)^{1/3} \ \simeq 4.7 imes 10^{-6} \ {
m pc} \ \left(rac{r_*}{{
m R}_\odot}
ight) \left(rac{M_*}{{
m M}_\odot}
ight)^{-1/3} \left(rac{M_{
m BH}}{10^7 \, {
m M}_\odot}
ight)^{1/3} \end{array}$$

The ratio of the two relevant length scales is

$$\begin{array}{lcl} \frac{r_{t1}}{a_0} &=& \frac{\sigma_*^2 r_*}{G m_*} \frac{q^{-1/(3-\gamma)}}{(3-\gamma)} \left(\frac{M_1}{m_*}\right)^{-2/3} \\ &\simeq& 1.0 \times 10^{-6} (3-\gamma)^{-1} M_7^{-2/3} q^{-1/(3-\gamma)} \sigma_{100}^2 \left(\frac{r_*}{\mathrm{R}_{\odot}}\right) \left(\frac{m_*}{\mathrm{M}_{\odot}}\right)^{-1/3} \end{array}$$

We normalize our experiment to the case $a=a_0$, $M_1=10^7 M_{\odot}$, q=1/81, $\gamma=2$ We record the first passage of each star in 20 equally log spaced points in the range (0.01-100) r_{t1}/a_0

<u>Three body scattering experiments</u>

We integrate the nine coupled second order, differential equations

$$\ddot{\mathbf{r}}_i = -G\sum_{i\neq j} \frac{m_j(\mathbf{r}_i - \mathbf{r}_j)}{|\mathbf{r}_i - \mathbf{r}_j|^3}$$

using the explicit Runge-Kutta integrator DOPRI8 (Hairer & Wanner 2002)

> 10 INITIAL CONDITIONS NEED TO BE SPECIFIED

 binary mass ratio
 binary eccentricity
 star/BH mass ratio
 initial distance of the star
 energy and angular momentum of the stellar orbit
 star orbit
 angles defining the star orbit
 initial binary phase

Examples of orbit integration

3

2.0

Tidal disruption 'cross sections'

Phase space structure of the disrupted stars

No clear structure in the *j*²-*E* space

Structure emerging in the j_z-*E* space: Kozai resonances +chaotic interactions

Tidal disruption timescales

$$T_{\rm K} = \begin{cases} rac{2}{3\pi q} \left(rac{a_*}{a}
ight)^{-3/2} P & (a_* \leq a/2) \ rac{16\sqrt{2}}{3\pi q} \left(rac{a_*}{a}
ight)^2 P & (a_* > a/2) \end{cases}$$

Static binary: tidal disruption rates

Weighting properly the tidal disruption events over an initial distribution function for the interacting stars in the cusp, the results can be translated into a *tidal disruption rate*

The hybrid model

We construct distributions of ejected and disrupted stars as a function of time on a grid of a/a_0 and e

-1

-2

0

δ\$_z,

1

2

The hybrid model II

Stars are drown from an initial distribution function representing a cusp centred onto M_1 with a given slope. M_2 is initially at a_0 so that $M_*(r < a_0) = 2M_2$

$$f_0(a_*,j_*,j_{z*}) = n_0(a_*) = rac{2(3-\gamma)}{a_0} rac{M_2}{\mathrm{M}_\odot} \left(rac{a_*}{a_0}
ight)^{2-\gamma}$$

We divide the *a*_{*}axis into logarithmic bins and we compute the initial mass in each bin

We evolve the binary according to:

$$egin{aligned} &\Delta m_i^{ ext{eff}}(\Delta t) &= \Delta m_i(au_i + \Delta t/P) - \Delta m_i(au_i), &m_i' &= m_i - \Delta m_i^{ ext{eff}}(\Delta t), \ &\Delta \mathcal{E}_b(\Delta t) &= \sum_{i=1}^{100} [\Delta \mathcal{E}_i(au_i + \Delta t/P) - \Delta \mathcal{E}_i(au_i)], &a' &= a - rac{\Delta \mathcal{E}_b(\Delta t)}{\mathcal{E}_b}a, \ &a' &= a - rac{\Delta \mathcal{E}_b(\Delta t)}{\mathcal{E}_b}a, \ &e' &= e - rac{1-e^2}{2e} \left[rac{\Delta \mathcal{E}_b(\Delta t)}{\mathcal{E}_b} + rac{2\Delta \mathcal{J}_b(\Delta t)}{\mathcal{J}_b}
ight]. \end{aligned}$$

At each timestep the number of ejected and disrupted stars computed interpolating among the grids and the stellar profile is accordingly updated

Results: binary evolution

 $(M_1 = 10^7 M_{\odot}, q = 1/81, \gamma = 2)$

Results: tidal disruption rates

Λ

Tidal disruption rate for an evolving MBHB $(M_1=10^7 M_{\odot}, q=1/81)$

The peak tidal disruption rate is *R*~0.3/yr scaling as

$$egin{aligned} & M_*^d & \propto & (3-\gamma)^{-2} q^{(4-2\gamma)/(3-\gamma)} \left(rac{a}{a_0}
ight)^{1-\gamma} M_1^{-1/3} \sigma_*^4 \ & \propto & (3-\gamma)^{-2} q^{(4-2\gamma)/(3-\gamma)} \left(rac{a}{a_0}
ight)^{1-\gamma} M_1^{2/3}, \end{aligned}$$

The number of disrupted stars is N~5x10⁴ scaling as

$$egin{aligned} N^d_{ ext{tot}} \propto t_{ ext{evo}} \dot{N}^d_{*} & \propto & (3-\gamma)^{-1/2} q^{(2-\gamma)/(6-2\gamma)} M^{2/3} \sigma \ & \propto & (3-\gamma)^{-1/2} q^{(2-\gamma)/(6-2\gamma)} M^{11/12} \end{aligned}$$

The effect of GR

Paczynski-Witta pseudo-Newtonian potential The disruption cross section drops significantly for *q*<0.01

GR vs. Kozai precession

$$\begin{aligned} \dot{\omega}_K &\simeq \begin{cases} \frac{15\pi q}{2\sqrt{2}P(a)} \left(\frac{r_{t1}}{a}\right)^{-1/2} \left(\frac{a_*}{a}\right)^2 & (a_* < a/2) \\ \frac{15\pi q}{32P(a)} \left(\frac{r_{t1}}{a}\right)^{-1/2} \left(\frac{a_*}{a}\right)^{-3/2} & (a_* \ge a/2) \\ \dot{\omega}_{\rm GR} &\simeq \frac{6\pi G M_1}{(1-e_*^2)c^2 a_*} P(a_*)^{-1} = \frac{3\pi}{2P(a)} \left(\frac{r_{g1}}{r_{t1}}\right) \left(\frac{a_*}{a}\right)^{-3/2} \end{aligned}$$

Disruption rate suppression

Number of events

~5x10⁴*M*/*M*₇ *disrupted stars, if* 0.01<*q*<0.1,

numbers are weakly dependent on the cusp slope

Cosmological models for MBHB formation and evolution predict a coalescence rate of ~0.1/yr in the relevant *M* and *q* range, at *z*<1

We thus may expect ~10³ flaring events to be associated with MBHBs at z<1

Observational probe of MBHBs?

TD flares may provide an efficient way to discover MBHBs:

- 1-TD rates for individual MBHs implies ~fewx10⁵ disruption events per galaxy per Hubble time. If all the galaxies experienced 1 minor merger in their lifetime, *as many as 10% of identified flares may be associated to MBHBs.*
- 2-In dense cusps, rates may be higher than 0.1/yr: the detection of a recursive flare activity in the same galaxy may provide evidence of a MBHB
- 3-If rates are >0.1/yr, the accretion episodes related to subsequent events may overlap, giving origin of a *short living* (10⁵yr) *AGN-type activity*

<u>Summary</u>

- > unequal MBHBs in dense stellar cusp produce a boost in the tidal disruption rate of main sequence stars
 - > A tidal disruption rate as high as 0.1/yr can be sustained for fewx10⁵ yrs
 - > GR mitigates the tidal disruption boost for q < 0.01
 - > For 0.01 < q < 0.1, $10^3 10^5$ stars may be disrupted in $10^5 - 10^7$ yrs depending on *M* and γ .
 - > LSST will detect hundreds of tidal flares, as many as 10% of which may be associated to MBHBs

The "final parsec problem"

We want MBHBs to coalesce after a major merger

Dynamical friction is efficient in driving the two BHs to a separation of the order

$$a_h \simeq 0.31 \,\mathrm{pc} \,\, M_{2,6}^{1/2} \sqrt{\frac{q}{1+q}}$$

GW emission takes over at separation of the order

$$a_{GW} \approx 0.0014 \,\mathrm{pc} \,\left(\frac{MM_1M_2}{10^{18.3} \,\mathrm{M_\odot}^3}\right)^{1/4} \,F(e)^{1/4} \,t_9^{1/4}$$

The ratio can be written as

$$\frac{a_h}{a_{GW}} \approx 2.5 \times 10^2 \left(\frac{q}{1+q}\right)^{3/4} F(e)^{-1/4} M_6^{-1/4} t_9^{-1/4}$$

<u>A possible solution: Gravitational Slingshot</u>

Extraction of binary binding energy via three body interaction with stars

<u>3-body Scattering experiments</u>

(e.g. Mikkola & Valtonen 1992, Quinlan 1996)

> More feasibles

- > need a large amount of data for significative statistics (eccentricity problem)
- > warning: <u>connection with real galaxies!</u>
 - initial conditions
 - > loss cone depletion
 - > contribution of returning stars
 - > presence of bound stellar cusps

N-body simulation (e.g. Milosavljevic & Merritt 2001)

<u>Hardening in a fixed background</u>

Quinlan 1996

$$H = \frac{\sigma}{G\rho_0} \frac{d}{dt} \left(\frac{1}{a}\right)$$

HARDENING RATE

ECCENTRICITY GROWTH RATE

$$J = \frac{1}{M} \frac{dM_{\rm ej}}{d\ln(1/a)}$$

MASS EJECTION RATE

$$v_{\rm esc} \equiv \sqrt{-2\phi} - 2\sigma \sqrt{\left[\ln(M_B/M) + 1\right]} - 5.5\sigma$$

a-Orbital decay

orbital decay is at most a factor of ~5
 loss cone depletion is fast

The MBHB fate depends on the supply of stars

> Loss cone amplification

> Axisymmetric and triaxial potentials

(e.g. Yu 2002, Merritt & Poon 2004, Berzcik et al. 2006)

> MBHB random walk

(e.g. Quinlan & Hernquist 1997, Chatterjee et al. 2003)

> Relaxation processes

> Standard two body relaxation (Milosavljevic & Merritt 2001)

- > *Massive perturbers driven relaxation* (Perets & Alexander 2007)
- > **Resonant relaxation** (Hopman & Alexander 2006)

Additional sources of energy!

- > Extraction of potential energy from a Bound Stellar Cusp
 (See next slide...)
- > Torques exerted on the MBHB
 - by a gaseous disk

(Armitage & Natarajan 2002, Escala et al. 2005, Dotti et al. 2006)

<u>Why consider bound environments</u>

For equal MBHBs, $a_h \sim a_i$ \longrightarrow The mean stellar binding energy to the binary is negligible **But:** $a_h \propto M_2$, $a_i \propto M_1$ For unequal MBHBs, $a_h << a_i$ \longrightarrow The mean stellar binding energy to the binary cannot be neglected

> binding energy contribution *important if* q < 0.1and the stellar distribution is cuspy

 > Cosmological unequal MBHBs
 > non-cosmological IMBH-MBH inspirals (e.g. from SC inspirals)

<u>The hybrid</u>

We consider a MBHB with mass ratio q with initial eccentricity e_i in a power law stellar cusp $\propto r^{\gamma}$

The integration start at a_i , so that $M_*(a < a_i) = 2M_2$ (Matsubayashi et al. 2005)

We solve the evolution

$$\frac{da}{dt} = -\frac{2a^2}{GM_1M_2} \int_0^\infty \Delta \mathcal{E} \frac{d^2N_{\rm ej}}{da_\star dt} da_\star$$

$$\frac{de}{dt} = \int_0^\infty \Delta e \frac{d^2 N_{\rm ej}}{da_\star dt} da_\star$$

 Δe , $\Delta \varepsilon$ and $d^2 N_{ei}/da_* dt$ are provided by 3-body experiments

<u>Results I: the</u>

(All the results are shown in units of a_i , P_0 , $V_c(a_i)$)

		$\gamma = 1.5$		$\gamma = 1.75$		$\gamma = 2$	
\overline{q}	e_i	x	e_f	x	e_f	x	e_f
1/9	0.1	9.63	0.608	9.89	0.350	11.38	0.179
	0.5	9.99	0.972	11.55	0.907	15.77	0.753
	0.9	10.06	0.998	11.80	0.992	17.73	0.969
1/27	0.1	8.06	0.691	8.35	0.532	10.19	0.408
	0.5	8.26	0.959	9.35	0.862	12.35	0.710
	0.9	8.27	0.996	9.64	0.988	14.03	0.958
1/81	0.1	6.99	0.755	7.75	0.650	9.39	0.542
	0.5	6.90	0.922	7.81	0.828	10.14	0.717
	0.9	6.89	0.996	7.81	0.974	11.00	0.937
1/243	0.1	6.49	0.906	7.28	0.805	9.30	0.688
	0.5	6.39	0.971	7.25	0.914	9.92	0.818
	0.9	6.38	0.962	7.19	0.986	10.09	0.955
1/729	0.1	6.12	0.881	6.91	0.814	8.94	0.724
	0.5	5.95	0.919	6.91	0.869	9.09	0.797
	0.9	5.94	0.977	6.92	0.953	9.41	0.900

Shrinking factors 6<*x*<18 MBHB eccentricity grows

<u>Results II: the</u> a- Staty State evolution

The density profile flattens significantly

The unbound mass is $2-4M_2$ almost independently on *e* and γ

THE CASE STUDY OF THE MILKY

Large eccentricity growth during the MBHB shrinking

Significant flattening of the inner 10⁻² pc

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	γ^a	r_0^b	$ ho_0^c$	q^d	a_i^e	$P_0(a_i)^f$	$V_{\mathbf{c}}(a_i)^g$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		[pc]	$[{\rm M}_{\odot}{\rm pc}^{-3}]$		[pc]	[yr]	$[\rm km/s]$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.5	2.25	7.1×10^{4}	1/243	5.8×10^{-2}	1344	510
1.75 1.88 10^5 1/243 2.3×10 ⁻² 340 806				1/729	2.8×10^{-2}	448	735
	1.75	1.88	10^{5}	1/243	2.3×10^{-2}	340	806
$- 1/729 9.6 \times 10^{-3} 91 1250$				1/729	9.6×10^{-3}	91	1250

...HIERARCHICAL MBH FORMATION

Examples of orbit integrations

Weak interaction: the system behaves as a stable hierarchical triplet

Strong interaction resulting in a stellar ejection

