The Kinematical Signature of Massive Black Hole Binaries

Yohai Meiron & Ari Laor

Department of Physics Technion – Israel Institute of Technology

Stars and Singularities Workshop, Weizmann Institute of Science

December 8, 2009

Introduction

Binary Black Holes (BBHs) form when galaxies merge. Do they actually *coalesce*?

Theory

No, the binary reaches a stalling radius.

Yes, due to triaxiality, massive perturbers, gas...

Expected BBH stalling radii ≤ 0 ?'1 even in nearby galaxies.

Yu (2002)

 $\sigma_{e} \ (km/s)$

Can BBHs be detected even when not resolved directly?

Summary

Introduction

BBHs produce a *kinematic* signature on scales 5–10 stalling radii. This may be observed when the BBH is *unresolved*.

Method

Map the stellar kinematics near a BBH through scattering experiments (3-body simulations).

The "reverse" approach of previous studies.

Assumption

The BBH is in a fixed circular orbit, embedded in a static *bulge potential*.

Summary

Stability Maps

Cuts in phase space to probe regions of stability.

Similar concept in Wiegert & Holman (1997).

Stability Maps

With decreasing *r*

- Tangential retrograde orbits are preferred.
- Volume of stable orbits shrinks.

independent of the initial conditions for phase space population.

Summary

Observed Kinematic Signature

Calculate the projected stellar velocity distribution for a binary at the *hard binary separation*:

$$a_h = \frac{q}{1+q} \frac{GM_{\bullet}}{4\sigma^2}$$

embedded in an isothermal sphere:

$$\rho(r) = \frac{\sigma^2}{2\pi G r^2}$$

where σ is determined from the *M*- σ relation.

Summary

Observed Kinematic Signature

Calculate the projected stellar velocity distribution for a binary at the *hard binary separation*:

$$a_h = \frac{q}{1+q} \frac{GM_{\bullet}}{4\sigma^2}$$

embedded in an isothermal sphere:

$$\rho(r) = \frac{\sigma^2}{2\pi G r^2}$$

where σ is determined from the *M*- σ relation.

1

Summary

Observed Kinematic Signature

Calculate the projected stellar velocity distribution for a binary at the *hard binary separation*:

$$a_h = \frac{q}{1+q} \frac{GM_{\bullet}}{4\sigma^2} \xrightarrow[q=0.1]{q=1} \sim 1.6 \text{ pc}$$
$$\sim 0.3 \text{ pc}$$

embedded in an isothermal sphere:

$$\rho(r) = \frac{\sigma^2}{2\pi G r^2}$$

where σ is determined from the *M*- σ relation.

Kinematical Maps

Equal Masses

Kinematical Maps

1:10 Mass Ratio

Example Line Profiles

Equal Masses

Projected Density

The Kinematical Signature of Massive Black Hole Binaries 10

Density Profile

Ratio	N_i	Divergent	Crashing	$M_{\rm def}/M_{12}$
1	6.8×10^{7}	.26	.013	1.01
0.1	8.2×10^{7}	.34	.026	0.45

Merritt (2006) found $M_{\rm def}/M_{12} \approx 0.5$

Results

Summary

The predicted BBH signature

- A counter-rotating torus.
- A dip in σ .

