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Introduction Methods Results Summary

Introduction

Binary Black Holes (BBHs) form when galaxies merge.
Do they actually coalesce?

Theory

No, the binary reaches a stalling radius.
Yes, due to triaxiality, massive perturbers, gas. . .

Expected BBH stalling radii . 0 .′′1 even in nearby galaxies.
Yu (2002)

Can BBHs be detected even when not resolved directly?
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Introduction Methods Results Summary

Introduction

BBHs produce a kinematic signature on scales 5–10 stalling
radii. This may be observed when the BBH is unresolved.

Method

Map the stellar kinematics near a BBH through scattering ex-
periments (3-body simulations).

The “reverse” approach of previous studies.

Assumption

The BBH is in a fixed circular orbit, embedded in a static bulge
potential.
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Stability Maps

Cuts in phase space to probe regions of stability.
Similar concept in Wiegert & Holman (1997).
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Stability Maps
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With decreasing r

Tangential retrograde orbits are preferred.

Volume of stable orbits shrinks.

independent of the initial conditions for phase space population.
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Observed Kinematic Signature

Calculate the projected stellar velocity distribution for a binary
at the hard binary separation:

ah =
q

1 + q

GM•

4σ2

embedded in an isothermal sphere:

ρ(r) =
σ2

2πGr2

where σ is determined from theM-σ relation.
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Observed Kinematic Signature

Calculate the projected stellar velocity distribution for a binary
at the hard binary separation:

ah =
q

1 + q

GM•

4σ2
∼ 1.6 pc
∼ 0.3 pc

q = 1

q = 0.1

embedded in an isothermal sphere:

ρ(r) =
σ2

2πGr2

where σ is determined from theM-σ relation.

6 / 12The Kinematical Signature of Massive Black Hole Binaries



Introduction Methods Results Summary

Kinematical Maps
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Kinematical Maps

1:10 Mass Ratio
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Example Line Profiles
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Projected Density
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Density Profile
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Equal masses
1:10 mass ratio
Initial

Ratio Ni Divergent Crashing Mdef/M12

1 6.8 × 107 .26 .013 1.01
0.1 8.2 × 107 .34 .026 0.45

Merritt (2006) foundMdef/M12 ≈ 0.5
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Summary

The predicted BBH signature

A counter-rotating torus.

A dip in σ.

Observable?
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