The young stars in the Galactic center

Alessia Gualandris

Max-Planck Institut für Astrophysik, Garching

The Galactic Center

- SMBH $\mathrm{M}=4 \times 10^{6} \mathrm{M}_{\odot}$
- Stellar cusp d $\leqslant 3$ pc
- CW stellar disk scale 0.04-0.4 pc mass $\sim 10^{4} \mathrm{M}_{\odot}$ age $\sim 6 \mathrm{Myr}$
- S-cluster $\mathrm{N} \sim 20$

B-type stars
$\mathrm{a}=5-50 \mathrm{mpc}$
random orientations

The Centre of the Milky Way (VLT YEPUN + NACO)

- European Southem Observatory

2008
 $$
\mathrm{N}=20 \text { stars }
$$
 15 early-type stars
 5 late-type stars
 $\mathrm{m} \sim 10-15 \mathrm{M}_{\odot}$
 $\mathrm{T} \sim 10 \mathrm{Myr}$

Gillessen et al. (2009)

Alessia Gualandris, Weizmann Institute, 13/12/09

Alessia Gualandris, Weizmann Institute, 13/12/09

Alessia Gualandris, Weizmann Instituke, 13/12/09

The S-star cluster

Gillessen et al. (2009)

Alessia Gualandris, Weizmann Inskitute, 13/12/09

Origin of the S-star cluster

Proposed models:

in-situ formation

Bonnell \& Rice (2008)

binary capture

Gualandris, Portegies Zwart, Sipior (2005)

cluster infall

Fujii et al. (2008)

Alessia Gualandris, Weizmann Institute, 13/12/09

Properties of IMBH infall:

stalling
 - eccentric orbit

$$
a_{\text {stall }} \sim 0.2 \frac{q}{1+q} r_{h} \quad \text { Merritt (2006) }
$$

Baumgardt, Gualandris, Portegies Zwart (2006)

Alessia Gualandris, Weizmann Instituke, 13/12/09

BBH initial conditions:

* $\mathrm{M}_{\text {SMBH }}=4.5 \times 10^{6} \mathrm{M}_{\text {。 }}$
* $\operatorname{IMBH} q=10^{-4}-10^{-3}$
* $\mathrm{a}=10$ - 80 mpc
* $\mathrm{e}=0.2$ - 0.5

Stars initial conditions: orbits similar to those of tidally stripped stars, with a small thickness

Alessia Gualandris, Weizmann Institute, 13/12/09

- φ GRAPE: parallel direct summation N-body code, 4th order Hermite integrator, predictor-corrector scheme, GRAPE support
- AR-CHAIN: algorithmic regularization code with PN terms up to order 2.5
- φ GRAPEch: hybrid N-body φ GRAPE + chain regularization

Simulating the Galactic Center

Gravity Simulator @ RIT

Alessia Gualandris, Northwestern Universiby, 12/01/09

$$
\text { stars } \mathrm{N}=20
$$

BBH

$$
\mathrm{q}=0.001
$$

$$
\mathrm{a}=15 \mathrm{mpc}
$$

$$
e=0.5
$$

AR-CHAIN algorithmic regularization code

Merritt, Gualandris, Mikkola (2009)

Alessia Gualandris, Weizmann Institute, 13/12/09

N-body simulations

stars
$\mathrm{N}=20$

BBH
$\mathrm{q}=0.001$
$\mathrm{a}=15 \mathrm{mpc}$
$\mathrm{e}=0.5$

Alessia Gualandris, Weizmann Institute, 13/12/09

Rayleigh parameter

$$
\begin{aligned}
& R=\frac{1}{N}\left|\sum_{i}^{N} \mathbf{r}_{\mathbf{i}}\right| \\
& \text { aIMBH }=30 \mathrm{mpc} \\
& \qquad \begin{array}{l}
\mathrm{q}
\end{array}=1.0 \times 10^{-3} \\
& \mathrm{q}=5.0 \times 10^{-4} \\
& \mathrm{q}=2.5 \times 10^{-4} \\
& \mathrm{q}=1.0 \times 10^{-4}
\end{aligned}
$$

Merritt, Gualandris, Mikkola (2009)

Alessia Gualandris, Weizmann Institute, 13/12/09

$$
\begin{gathered}
\mathrm{M}_{\mathrm{IMBH}}=4000 \mathrm{M}_{\odot} \\
\mathrm{a}=15 \mathrm{mpc} \\
\mathrm{e}=0.5
\end{gathered}
$$

efficient thermalization of eccentricities

Merritt, Gualandris, Mikkola (2009)

Alessia Gualandris, Weizmann Institute, 13/12/09

Semi-major axes

$\mathrm{a}=15 \mathrm{mpc}$

$$
\mathrm{a}=30 \mathrm{mpc}
$$

$\mathrm{a}=20 \mathrm{mpc}$

$\mathrm{a}=40 \mathrm{mpc}$

Alessia Gualandris, Weizmann Instituke, 13/12/09

Evolution of S－stars＋IMBH

- $\quad \mathrm{SMBH} \mathrm{M}_{\text {SMBH }}=4 \times 10^{6} \mathrm{M}$ 。
- 19 －stars $m=10 \mathrm{M}$ 。
－IMBH $\mathrm{M}_{\mathrm{IMBH}}=400,1000$ ， $2000,4000 \mathrm{M}$ 。
－$\quad a=0.3,1,3,10,30 \mathrm{mpc}$
－ 12 positions on the sky
－\quad еІмвн $=0,0.7$

Randomization of inclinations

star S9

Long-term perturbations on the S-stars

$$
\begin{gathered}
\mathrm{M}_{\mathrm{IMBH}}=4000 \mathrm{M} \odot \\
\mathrm{a}=30 \mathrm{mpc} \\
\text { perturbations }
\end{gathered}
$$

Gualandris \& Merritt (2009)

Long-term perturbations on the S-stars

$$
\begin{gathered}
\mathrm{M}_{\mathrm{IMBH}}=2000 \mathrm{M} \odot \\
\mathrm{a}=10 \mathrm{mpc} \\
\text { ejection }
\end{gathered}
$$

Gualandris \& Merritt (2009)

$$
\begin{aligned}
T_{K} & =\kappa \frac{P_{\mathrm{out}}^{2}}{P_{\mathrm{in}}} \frac{M_{\mathrm{BH}}+m}{M_{p}}\left(1-e_{\mathrm{out}}^{2}\right)^{3 / 2} \\
\kappa & =\kappa\left(j, e_{\mathrm{inn}}, \omega\right) \\
e_{\max } & =e_{\max }\left(j, e_{\mathrm{inn}}, \omega\right)
\end{aligned}
$$

$$
h=\left(1-e^{2}\right) \cos ^{2}(j)
$$

Alessia Gualandris, Weizmann Inskitute, 13/12/09

circular binary

Effects on

eccentricity distribution and number of escapers

\Downarrow

Exclude parameters:
$\mathrm{a}=3-10 \mathrm{mpc}$
$\mathrm{M}_{\mathrm{BH}}=2000-4000 \mathrm{M}$ 。

Gualandris \& Merritt (2009)

Ejections

eccentric binary

Gualandris \& Merritt (2009)

* BBH com ~ peak stellar distribution within uncertainties (YT03)
* lifetime $\mathrm{T}_{\mathrm{GW}}>10^{7} \mathrm{yr}$
* mass enclosed within
orbit of $\mathrm{S} 2<0.02 \mathrm{M}_{\mathrm{BH}}$
* motion of SgrA* (HM03, RB04)
* stability of S-cluster

Gualandris \& Merritt (2009)

In-situ formation

formation in a gas disk (either current CW disk or older disk)

+ migration
\hookrightarrow low eccentricities

Binary
 capture

formation in a binary

+ scattering off massive perturbers
+ tidal disruption
+ resonant relaxation
\hookrightarrow high eccentricities
- Isotropic cusp $\mathrm{N}=1200 \mathrm{r}<0.3 \mathrm{pc}$
- $N_{1}=200 N_{2}=1000$
- $\mathrm{m}_{1}=3 \mathrm{M}_{\odot}$ S-stars, $\mathrm{m}_{2}=10 \mathrm{M}_{\odot}$ bhs
- $\mathrm{M}_{\mathrm{BH}}=3.6 \times 10^{6} \mathrm{M}_{\odot}$
- Power-law distribution $\mathrm{r}^{-\alpha}, 0.001<\mathrm{r}<0.05 \mathrm{pc}$ $\alpha=2$ for bhs , $\alpha=1.5$ for S-stars

Eccentricity distribution

> high initial eccentricities (e>0.96) binary disruption
> low initial eccentricities ($\mathrm{e}<0.5$) disk origin

Binary disruption $\mathrm{t}=20 \mathrm{Myr}$

is the favored model

Perets, Gualandris, Merritt, Alexander (2009)

Alessia Gualandris, Weizmann Institute, 13/12/09

Origin of early-type stars

New identification of 35 early-type stars

beyond 0.5 pc (~13 as)
 isotropically distributed

- Isotropic cusp of stellar black holes: $\mathrm{N}_{1}=16000, \mathrm{~m}_{1}=10 \mathrm{M}_{\odot}$
- Power-law distribution $\mathrm{r}^{-2}, 0.03 \mathrm{pc}<\mathrm{r}<0.8 \mathrm{pc}$
- Stellar disk with Salpeter MF: $\mathrm{N}_{2}=2500$
- $\mathrm{M}_{\mathrm{BH}}=3.6 \times 10^{6} \mathrm{M}_{\odot}$

Origin of early-type stars beyond 0.5 pc

Perets et al. (in prep)

Alessia Gualandris, Weizmann Institute, 13/12/09

Models for origin of S-stars in the Galactic center:

* In-situ formation can be excluded
* Binary disruption scenario explains all the properties but requires chain of events
* Cluster infall scenario with IMBH naturally explains all properties and time-scales
* Long-term perturbations from an IMBH allow to constrain orbital parameters

