Resonant stars/disk interactions: implications for MBH evolution

Michal Bregman & Tal Alexander Weizmann Institute of Science

Simulation of a warped accretion disk-G.Lodato

The key question

Motivation:

- Spin affects accretion efficiency.
- The puzzle of very massive BH in the early universe.
- Evidence for MBH spin precession.
- Warped disks (NGC4258)

RR mechanism

Rauch & Tremaine 96

vector RR

The residual torque on a test mass

$$\tau = N_{\star}^{1/2} \frac{GM_{\star}}{r}$$

10

sgn(r-R)

The coherence time

$$t_0 = A_0 L_c / \tau = A_0 P M_{\bullet} / (M_{\star} N_{\star}^{1/2})$$

$$t \gg t_0$$
 $|\Delta L|/L_c = 1$ $(\Delta L)_{t_0}/L_c](t_{vRR}/t_o)^{1/2} = 1$

RR warping of an accretion disk

Angular momentum condition

$$L_{disk} \qquad L_{\star}$$
$$wM_d(R)L_c(R) \le N_{\star}^{1/2}M_{\star}L_c(r)$$

Timescale condition

 $wt_{vRR}(r,R) \leq t_{visc}$

 $t_{visc} = min(t_{\nu_1}, t_{\nu_2})$

 $r_L < r$

$$r_t^{(-)} \le r \le r_t^{(+)}$$

The disk will warp only if $max(r_t^{(-)}, r_L) \le r \le r_t^{(+)}$

where: r radius in the cusp, R radius in the disk, $L_c = (GM_{\bullet}r)^{1/2}$ and $w^2 = 2(1 - \cos\omega)$

RR disk warping and early MBH evolution

RR may affect low-mass MBHs in early universe:

$$\frac{\sqrt{N}}{Q}P \sim T_{vRR} < t_{inflow} \sim \frac{(R/H)^2}{\alpha}P$$

 $Q \lesssim 10^5 - 10^6$

 $Q = M_{\bullet}/M_{\star}$

Maser disk NGC4258

RR disk warping of NGC4258

Bregman et.al 2009 ApJ

The $O(10\pm)$ NGC4258 disk warp on the O(0.1pc) scale is naturally explained by RR torques of O(106) stars on the O(1pc) scale.

Preliminary work

and future steps

Warp diffusion in accretion discs

mass conservation + angular momentum conservation

$$\frac{\partial \mathbf{L}}{\partial t} = \frac{3}{R} \frac{\partial}{\partial R} \left[\frac{R}{L} \frac{\partial}{\partial R} (\nu_1 L) \mathbf{L} \right] + \frac{1}{R} \frac{\partial}{\partial R} \left[\frac{1}{2} \nu_2 R L \frac{\partial (\mathbf{L}/L)}{\partial R} \right]$$

diffusive part

$$+ \frac{1}{R} \frac{\partial}{\partial R} \left[(\nu_2 R^2 \frac{\partial (\mathbf{L}/L)^2}{\partial R} - \frac{3}{2} \nu_1) \mathbf{L} \right] + \dot{\mathbf{L}}_{(+)} + \dot{\mathbf{L}}_{(-)} + \mathbf{T}_{RR}$$

advective part
sink term

Surface density distribution for steady state disk

Tilt evolution

RR toy model

$$M_{\bullet}/M_{\star} = 1e6$$
 $\nu_1 = \nu_2 = 1$ $\gamma = 1.5$

torques field

Precession angular velocity

$$\Omega_{LT} = \frac{2G}{c^2} \frac{J_{\bullet}}{r^3} \qquad \qquad J_{\bullet} = a_* G M_{\bullet}^2 / c$$

$$t_{BP} = R_{BP}^2 / \nu_2 \qquad t_{vRR} = R_{RR}^2 / \nu_2$$

RR torquing redefine the inclination angle of the disc for the BP alignment on t_RR time scale

Results - simulations

N-body simulations, using the code developed by G. Kupi (2007)

Open questions

- Are there enough stellar black holes so close to the MBH to affect the disk?
- Will RR completely disrupt the disk?

Summary

- Poisson fluctuations in stellar distribution transfer momentum from stars to maser disk and excite torque.
- RR inherent to discreteness to stellar system: does not require special disk initial conditions.
- RR induced warps are transient, vary on a timescale $t_{vRR} \sim few \times 10^7 yr$
- RR warping mechanism dominants warping dynamics faster than other suggested mechanisms. $t_{BP} > few \times 10^9 yr$
- RR may rotate MBH spin vector by the Bardeen Petterson coupling of the disk's orientation at large radii with the MBH spin direction.