Resonant stars / disk interactions: implications for MBH evolution

Michal Bregman \& Tal Alexander
Weizmann Institute of Science

Simulation of a warped accretion disk- G.Lodato

The key question

Motivation:

- Spin affects accretion efficiency.
- The puzzle of very massive BH in the early universe.
- Evidence for MBH spin precession.
- Warped disks (NGC4258)

RR mechanism

Perturbing stars

Effect on perturbed star

Rauch \& Tremaine 96

vector RR

The residual torque on a test mass $\quad \tau=N_{\star}^{1 / 2} \frac{G M_{\star}}{r}$

The coherence time

$$
t_{0}=A_{0} L_{c} / \tau=A_{0} P M_{\bullet} /\left(M_{\star} N_{\star}^{1 / 2}\right)
$$

$$
t \gg t_{0} \quad|\Delta L| / L_{c}=1 \quad \rightarrow \quad\left[(\Delta L)_{t_{0}} / L_{c} \mid t_{v R R} / /_{0}\right)^{1 / 2}=1
$$

Disc viscosity

In plane viscosity- $\quad \nu_{1}=\alpha_{1} C_{s} H$

$$
\rightarrow \quad \alpha_{2}=\frac{1}{2 \alpha_{1}}
$$

Perpendicular viscosity- $\nu_{2}=\alpha_{2} C_{s} H$

α disk model: stress tensor $\sigma_{i j}=\alpha P \quad(0<\alpha<1)$

$$
t_{v i s c}=R^{2} / \nu
$$

RR warping of an accretion disk

Angular momentum condition

Timescale condition

$$
w t_{v R R}(r, R) \leq t_{v i s c} \quad t_{v i s c}=\min \left(t_{\nu_{1}}, t_{\nu_{2}}\right)
$$

$$
r_{t}^{(-)} \leq r \leq r_{t}^{(+)}
$$

The disk will warp only if $\max \left(r_{t}^{(-)}, r_{L}\right) \leq r \leq r_{t}^{(+)}$
where: r radius in the cusp, R radius in the disk, $L_{c}=\left(G M_{\bullet} r\right)^{1 / 2}$ and $w^{2}=2(1-\cos \omega)$

RR disk warping and early MBH evolution

RR may affect low-mass MBHs in early universe:

$$
\frac{\sqrt{N}}{Q} P \sim T_{v R R}<t_{\text {inflow }} \sim \frac{(R / H)^{2}}{\alpha} P
$$

$$
Q \lesssim 10^{5}-10^{6}
$$

$$
Q=M_{\bullet} / M_{\star}
$$

Maser disk NGC4258

Herrnstein et al 1996
Observer's View
0.1 pc

Radio measurements of x, v, v
$D=7.2 \pm 0.3 M p c \quad M_{\bullet}=3.7 \times 10^{7} M_{\odot} \quad R=0.14-0.28 p c \quad \gamma=1.5 \quad$ warp $\sim 8^{\circ}$

RR disk warping of NGC4258

$$
s=-3 / 4
$$

Bregman et.al 2009 ApJ

The $O(10 \pm)$ NGC4258 disk warp on the $O(0.1 \mathrm{pc})$ scale is naturally explained by RR torques of $O(106)$ stars on the $O(1 \mathrm{pc})$ scale.

Preliminary work

and future steps

Warp diffusion in accretion discs

mass conservation + angular momentum conservation

$$
\frac{\partial \mathbf{L}}{\partial t}=\frac{3}{R} \frac{\partial}{\partial R}\left[\frac{R}{L} \frac{\partial}{\partial R}\left(\nu_{1} L\right) \mathbf{L}\right]+\frac{1}{R} \frac{\partial}{\partial R}\left[\frac{1}{2} \nu_{2} R L \frac{\partial(\mathbf{L} / L)}{\partial R}\right]
$$

diffusive part

$$
+\frac{1}{R} \frac{\partial}{\partial R}\left[\left(\nu_{2} R^{2} \frac{\partial(\mathbf{L} / L)^{2}}{\partial R}-\frac{3}{2} \nu_{1}\right) \mathbf{L}\right]+\dot{\mathbf{L}}_{(+)}+\dot{\mathbf{L}}_{(-)}+\mathbf{T}_{R R}
$$

source term

Surface density distribution for steady state disk

Tilt evolution

Tilt evolution wrt MBH spin axis

RR toy model

inclination, with RR no BP, initial inclination ~ 0 deg

inclination, with RR with $B P$, initial inclination ~ 0 deg

$$
M_{\bullet} / M_{\star}=1 e 6 \quad \nu_{1}=\nu_{2}=1 \quad \gamma=1.5
$$

torques field

Precession angular velocity

$$
t_{B P}=R_{B P}^{2} / \nu_{2}
$$

$$
\begin{gathered}
\Omega_{L T}=\frac{2 G}{c^{2}} \frac{J_{\bullet}}{r^{3}} \quad J_{\bullet}=a_{*} G M_{\bullet}^{2} / c \\
t_{v R R}=R_{R R}^{2} / \nu_{2}
\end{gathered}
$$

$R R$ torquing redefine the inclination angle of the disc for the BP alignment on t_RR time scale

Results - simulations

N-body simulations, using the code developed by G. Kupi (2007)

Open questions

- Are there enough stellar black holes so close to the MBH to affect the disk?
- Will RR completely disrupt the disk?

Summary

- Poisson fluctuations in stellar distribution transfer momentum from stars to maser disk and excite torque.
- RR inherent to discreteness to stellar system: does not require special disk initial conditions.
- RR induced warps are transient, vary on a timescale $t_{v R R} \sim f e w \times 10^{7} y r$
- RR warping mechanism dominants warping dynamics faster than other suggested mechanisms. $\quad t_{B P}>f e w \times 10^{9} y r$
- RR may rotate MBH spin vector by the Bardeen - Petterson coupling of the disk's orientation at large radii with the MBH spin direction.

