Wandering Black Holes in Merging Galaxies

Laura Blecha

with T.J. Cox, Avi Loeb, & Lars Hernquist Harvard University

Stars & Singularities Workshop Weizmann Institute 12/8/09

Overview of Gravitational-Wave Recoil

- Results from asymmetrical GW emission during BH merger
- Kick speed depends on mass *ratio* and spins
- Easier to eject BHs at high redshift (lower v_{esc})
- Major mergers more frequent at high redshift

Overview of Gravitational-Wave Recoil

- Maximum kick speed ~ 4000 km s⁻¹
- For high spins & random orientations, fraction of kicks with
 - v_k > 500 km s⁻¹: **12-36%**
 - v_k > 1000 km s⁻¹: **3-13%**

(Schnittman & Buonanno 2007, Campanelli et al. 2007, Baker et al. 2008)

 Kicks could be lower if spins become aligned due to torques from a gas disk (Bogdanović et al. 2007, Dotti et al 2009)

Observable signatures: EM counterparts

- Recoiling quasars:
 - $r_{ej} \sim G M / v_{kick}^{2}$ (Loeb 2007)
 - Spatial offsets
 - Kinematic offsets

Kinematic Signatures of binaries vs. recoils

Recoils

Binaries

Offset between broad line region (BLR) and narrow line region (NLR)

Kinematic signatures of binaries vs. recoils

Signatures of GW recoil: EM counterparts

- Recoiling quasars:
 - $r_{ej} \sim G M / v_{kick}^{2}$ (Loeb 2007)
 - Spatial offsets
 - Kinematic offsets
- Recoil 'fallback' flares (Lippai et al. 2008, Shields & Bonning 2008)
- Recoiling star clusters (Ryan O'Leary's talk)
- Stellar tidal disruption flares (Nick Stone's talk)

Signatures of GW recoil: Host galaxy properties

- Scatter, offset, and/or outliers in M_{BH}-σ_{*} relation
 - Recoil events could produce under-massive BHs
 - Biggest effect at high z; observed z=0 relation constrains recoils at low z

Signatures of GW recoil: Host galaxy properties

- Core-scouring
 - M_{def} ~ few x M_{BH}
 - Most efficient in galaxies with very little gas
 - Occurs on small scales hard to observe or to resolve in SPH simulations

Observational constraints

- "Empty" galaxies generally not seen locally
- Small scatter of M_{BH} - σ_* relation
- Search for kinematic offsets in quasar spectra (SDSS) yielded a *null result* (Bonning et al. 2007)

GW recoil candidates

- SDSS J0927+2943:
 - 2650 km/s offset between BLR & NLR (Komossa et al. 2008)
 - May be a binary BH or a superposition of galaxies (Shields et al. 2008, Heckman et al. 2008, Dotti et al. 2008, & Bogdanović et al. 2008)
- SDSS J1050+3456:
 - 3500 km/s offset between BLR & NLR (Shields et al 2009)
 - May be a feature of rotating gas in a disk
- Note: both candidates have *extreme* velocities

Galaxy merger simulations

- Major merger of two disk galaxies simulated with GADGET (SPH / N-body code)
- Includes models for BH (Bondi) accretion & feedback, and star formation (Springel et al. 2005)
- Also includes accretion drag on the BH ∝ M

Galaxy merger simulations with GW recoil

- Recoil kick given to BH at time of BH merger
- Kick velocity calculated relative to *total* v_{esc} (incl. baryons and DM)

Example of recoiling BH trajectory

$v_{kick} = 0.9 v_{esc}$

BH trajectories varying v_{kick}/v_{esc}

40% initial gas fraction $v_{esc}(t_{mrg}) = 950 \text{ km/s}$ No gas v_{esc}(t_{mrg}) = 700 km/s

Evolution of BH escape velocity

Equal mass merger, 40% initial gas fraction Mass ratio q = 0.5, 40% initial gas fraction

BH trajectories delayed merger time constant $v_{kick}/v_{esc} = 0.9$

2.1

BH trajectories delayed merger time *constant* $v_{kick}/v_{esc} = 0.9$ gas drag is important!

BH trajectories delayed merger time *constant* $v_{kick}/v_{esc} = 0.9$ gas drag is important!

No Kick

No Kick

No Kick

• $v_{kick}/v_{esc} = 0.4$

- Mild suppression of BH accretion
- slightly smaller final BH
- $v_{kick}/v_{esc} = 0.6$
 - Accretion truncated at time of kick
 - Later episode of accretion when BH settles
 - BH undermassive by factor of ~ 2
- $v_{kick}/v_{esc} \gtrsim 0.8$
 - Accretion truncated at kick, does not restart
 - Slightly more star formation due to absence of BH feedback
 - BH undermassive by factor of ~ 4

Summary

 BHs kicked with v
subset vesc can reach large radii (R > R_{gal}) and may wander for up to a few Gyr

Summary

- BHs kicked with v ≤ v_{esc} can reach large radii (R > R_{gal}) and may wander for up to a few Gyr
- Observing recoiling BHs directly may be challenging
 - Largest kicks correspond to shortest quasar duty cycles
 - Recoils were likely larger and more frequent at high z
 - Recoil motion may be suppressed in nearly-equal-mass, gas-rich mergers (more typical at high z)

Summary

- BHs kicked with v ≤ v_{esc} can reach large radii (R > R_{gal}) and may wander for up to a few Gyr
- **Observing recoiling BHs directly may be challenging**
 - Largest kicks correspond to shortest quasar duty cycles
 - Recoils were likely larger and more frequent at high z
 - Recoil motion may be suppressed in nearly-equal-mass, gas-rich mergers (more typical at high z)

Indirect effects of recoil

- Undermassive BHs may produce scatter, offset, and/or outliers in M_{BH} - σ_* relation
- Amount of star formation in the central cusp may increase when BH (& feedback) are removed from the galactic center