5a. Representations of groups – supplement

(This is a slightly expanded version of a paragraph on p.5 of chapter 5, dealing with carrier spaces of vectors dependent on arguments acted on by the group elements $R_i \in \mathcal{G}$.)

The vectors $\{f\}$ carrying a representation of a group \mathcal{G} with elements $\{R_i\}$ may be functions of arguments $\{r\}$ on which the group elements act. The transformed function $[\mathsf{D}_R f](\mathbf{r})$ is defined to have the same value for argument \mathbf{r} as the original function $f(\mathbf{r})$ had for the argument that was transformed into \mathbf{r} , i.e. $[\mathsf{D}_R f](\mathbf{r}) = f(R^{-1}\mathbf{r})$.

Consider the action of the product of group elements R_1R_2 on the carrier space $\{f(\mathbf{r})\}$. A given vector $f(\mathbf{r})$, acted upon by R_2 , is transformed into the vector $f'(\mathbf{r}) = [\mathsf{D}R_2f](\mathbf{r}) = f(R_2^{-1}\mathbf{r})$. Action by R_1 transforms the resulting vector into $[\mathsf{D}R_1f'](\mathbf{r}) = f'(R_1^{-1}\mathbf{r})$.

But $f'(\mathbf{s}) = f(R_2^{-1}\mathbf{s})$ for any argument \mathbf{s} , so $f'(R_1^{-1}\mathbf{r}) = f(R_2^{-1}R_1^{-1}\mathbf{r})$. Recall $R_2^{-1}R_1^{-1} = (R_1R_2)^{-1}$ and, because D is a homomorphism, $\mathsf{D}_{R_1}\mathsf{D}_{R_2} = \mathsf{D}_{R_1R_2}$.

Finally, $[\mathsf{D}_{R_1R_2}f](\mathbf{r}) = [\mathsf{D}_{R_1}[\mathsf{D}_{R_2}f]](\mathbf{r})$ and multiplication is preserved.