Introductory Algebra — Exercise no. 3 Due Thursday, 1 December, 2016

1. Given a homomorphism from a group \mathcal{G} , of order n, onto a group \mathcal{G}' , of order m < n. Prove that the elements of \mathcal{G} which are mapped into the identity element $E' \in \mathcal{G}'$ form an invariant subgroup $\mathcal{K} \triangleleft \mathcal{G}$. Show that all the members of each coset of \mathcal{G} , relative to \mathcal{K} , are mapped into a single element of \mathcal{G}' and that the quotient group \mathcal{G}/\mathcal{K} is isomorphic to \mathcal{G}' under this mapping.

2. Construct the multiplication table of the direct product group $C_2 \otimes C_3$ and compare it with those of C_6 and the triangle group. $[C_r$ is the cyclic group of order r.]

3. Show that any finite group containing, in addition to the identity, only elements of order 2 is Abelian, isomorphic to the multiple direct product $C_2 \otimes C_2 \otimes C_2 \otimes \ldots \otimes C_2$ and of order a power of 2.