Introductory Algebra - Exercise no. 3 Due Thursday, 1 December, 2016

1. Given a homomorphism from a group \mathcal{G}, of order n, onto a group \mathcal{G}^{\prime}, of order $m<n$. Prove that the elements of \mathcal{G} which are mapped into the identity element $E^{\prime} \in \mathcal{G}^{\prime}$ form an invariant subgroup $\mathcal{K} \triangleleft \mathcal{G}$. Show that all the members of each coset of \mathcal{G}, relative to \mathcal{K}, are mapped into a single element of \mathcal{G}^{\prime} and that the quotient group $\mathcal{G} / \mathcal{K}$ is isomorphic to \mathcal{G}^{\prime} under this mapping.
2. Construct the multiplication table of the direct product group $\mathcal{C}_{2} \otimes \mathcal{C}_{3}$ and compare it with those of \mathcal{C}_{6} and the triangle group. $\left[\mathcal{C}_{r}\right.$ is the cyclic group of order r.]
3. Show that any finite group containing, in addition to the identity, only elements of order 2 is Abelian, isomorphic to the multiple direct product $\mathcal{C}_{2} \otimes \mathcal{C}_{2} \otimes \mathcal{C}_{2} \otimes \ldots \otimes \mathcal{C}_{2}$ and of order a power of 2 .
