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Abstract: Contact surface area and chemical properties of atoms are used to concurrently predict conformations of
multiple amino acid side chains on a fixed protein backbone. The combination of surface complementarity and
solvent-accessible surface accounts for van der Waals forces and solvation free energy. The scoring function is
particularly suitable for modeling partially buried side chains. Both iterative and stochastic searching approaches are
used. Our programs (Sccomp-I and Sccomp-S), with relatively fast execution times, correctly predict �1 angles for
92–93% of buried residues and 82–84% for all residues, with an RMSD of �1.7 Å for side chain heavy atoms. We find
that the differential between the atomic solvation parameters and the contact surface parameters (including those
between noncomplementary atoms) is positive; i.e., most protein atoms prefer surface contact with other protein atoms
rather than with the solvent. This might correspond to the driving force for maximizing packing of the protein. The
influence of the crystal packing, completeness of rotamer library and precise positioning of C� atoms on the accuracy
of side-chain prediction are examined. The Sccomp-S and Sccomp-I programs can be accessed through the Web
(http://sgedg.weizmann.ac.il/sccomp.html) and are available for several platforms.
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Introduction

Side-chain modeling is a necessary and important step in con-
structing complete structural models of proteins. Various ap-
proaches to construct structural models, such as comparative mod-
eling, threading, and ab initio prediction usually assign side-chain
location artificially as a subtask of the entire modeling procedure.1

Modeling of side chains is also required for flexible molecular
docking, for predicting local structural, and stability changes upon
mutations, and as a tool to fill in missing information from exper-
imental data (such as X-ray crystallography).

During the previous decade, the main focus of research in the
field was on search procedures, following the common belief that
the combinatorial nature of the problem is the main obstacle. A
number of searching techniques were applied to this task, includ-
ing dead end elimination,2–4 self-consistent–based methods,5–7

and Monte Carlo approaches.8–11 Most of these used very simple
energy functions, often just van der Waals and torsion terms. It has
since been suggested that the combinatorial problem is not that
severe in practice,12 and the focus of research shifted towards the
scoring function. More attention is now given to the solvation
terms13,14 and detailed rotamer libraries allow knowledge-based

derivation of pseudoenergy values for intraresidue energy and
local backbone interactions.15–18 An optimized scoring function
that includes geometric characteristics of interactions gives im-
pressive results and was demonstrated to perform significantly
better than standard force fields.17

Likewise, surface complementarity can be used to evaluate
intermolecular interactions based on the geometry and chemical
properties of individual atoms. The method was developed origi-
nally for molecular docking,19 and has been applied to various
predictions, such as modeling the quinone binding site in the D1
protein of the photosystem-2 reaction center20 and the tentoxin
binding sites of chloroplast F1-ATPase.21 In the original imple-
mentation, each atom was assigned one of eight chemical types.19

Weights for interactions between atoms were defined as favorable
(complementary chemical contact) or unfavorable (noncomple-
mentary chemical contact) according to the properties of the two
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atoms involved. The complementarity score (CS) is the sum of the
contacts surfaces Sij multiplied by the appropriate weight Wij:

CS � �
i

�
j

WijSij. (1)

For binary scores, CS is therefore simply the sum of contact
surface areas of noncomplementary atoms minus the sum of sur-
face areas of complementary atoms. Other weight schemes for Wij

are also possible between pairs of atom classes. One such contact-
based scoring scheme has recently been used by us to distinguish
native proteins from mis-folded decoy structures.22 The solvent-
accessible area correlates well with free energy of solvation.23,24

Therefore, surfaces in general might be used in scoring functions
instead of pseudoenergy-based terms.

However, there are several energy components that clearly do
not correlate with surfaces; for example, the torsion energy of a
molecule. Such a term is very important for modeling conforma-
tions of flexible moieties such as ligands and side chains. There-
fore, attempts to model such moieties using surface area require
incorporation of other terms to approximate the torsion energy.
Accepted procedures25 include addition of a standard torsion en-
ergy term, or using a term based on probabilities derived from
rotamer libraries.

Steric overlaps (repulsive van der Waals forces) are also not
represented by surface areas. In these cases, a steep term, like the
first component of the Lennard–Jones equation, is usually added.
Another possibility is to add a term proportional to the excluded
volume of the two spheres representing the atoms. Recently, it was
shown that such a term gives higher accuracy in side chain mod-
eling.17

It is known that optimum side chain conformation is very
sensitive to the exact backbone structure.26,27 This is especially
noticeable for ab initio protein structure predictions where the
main chains generated are often fairly distant (�2.0 Å C� RMSD)
from the native conformation.28 However, inaccuracy in side-
chain placement due to uncertainty in backbone structure can be
less problematic in cases where backbone structure is found to be
conserved, as in ligand docking29 and point mutations.30

In this report, we develop a new scoring function based on
surface complementarity that considers geometric and chemical
compatibility and solvent-accessible surface. A function of this
sort might be appropriate with only minor modification for both
predicting structural changes and estimating stability of point
mutations.

Methods

Protein Sets

Three sets of proteins were used (Table 1). Two sets were taken
from the work of Liang and Grishim.17 They are composed of
proteins crystallized as monomers without ligands that have less
than 50% pair-wise identity and a resolution equal or better than
1.8 Å. One was used as the training set (Set1) and the other as the
test set (Set2). The training set consists of about 3000 residues
undergoing conformational changes, and more than 10,000 atoms

Table 1. Protein Sets.a

PDB ID
Resolution

(Å)

Residues

Total no. Flexibleb
Buried
flexible

Set 1

1a8q 1.75 274 225 94
1amm 1.2 174 158 46
1bd8 1.8 156 121 36
1cem 1.75 363 292 135
1chd 1.75 199 154 57
1edg 1.6 380 329 143
1ifc 1.19 131 113 27
1mla 1.5 289 227 92
1nar 1.8 150 262 102
1npk 1.8 150 122 33
1thv 1.75 207 167 63
1vjs 1.7 480 391 170
2baa 1.8 243 178 67
2end 1.45 137 118 33
2pth 1.2 193 151 50

Set 2

153l 1.6 185 149 50
1ako 1.7 268 234 89
1arb 1.2 263 202 91
1bj7 1.8 150 135 44
1cex 1.0 197 146 53
1dhn 1.65 121 105 27
1hcl 1.8 298 259 90
1koe 1.5 172 144 50
1mml 1.8 251 221 66
1noa 1.5 113 80 22
1thx 1.7 198 97 33
1whi 1.5 122 101 29
2cpl 1.63 164 132 50
2hvm 1.8 273 221 92
2rn2 1.48 155 127 37

Set 3

1bgf 1.45 124 112 26
1bkrA 1.1 108 97 29
1byi 0.97 224 177 63
1ep0A 1.5 183 165 54
1es9A 1.3 212 183 66
1ey4A 1.6 136 114 33
1e5mA 1.54 411 315 140
1fcqA 1.6 321 276 107
1fo9 1.5 344 286 120
1gsoA 1.6 420 324 122
1ii5A 1.6 226 173 67
1jb3A 1.6 127 115 30
1ln4A 1.50 98 86 21
1l3kA 1.1 172 140 39
1qgvA 1.4 137 115 37
1t1dA 1.51 100 90 27
1wer 1.6 324 297 98
1bgf 1.45 124 112 26
2bce 1.6 532 436 198
2lisA 1.35 131 115 29

aSet1 and Set2 are from Liang and Grishin.17 Set3 was compiled as
described in the text.
bAll residues except Gly and Ala.
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that change position upon side-chain rotation. These atoms form
about 50,000 atom–atom contacts, permitting statistical derivation
of several parameters. In addition, we created another test set
(Set3) based on the October 2002 version of the PISCES site.31

Set3 has the following characteristics: the proteins share less than
20% identity, have an R-factor smaller than 0.25 and a resolution
equal or better than 1.6 Å. In addition, any protein that shared more
than 20% identity with a protein in Set1 and Set2, contained a
ligand, multiple chains or less than 100 residues was removed.
Following this, Set3 yielded a final group of 20 proteins.

Rotamer Libraries

The backbone-dependent rotamer library of Dunbrack and Co-
hen32 was modified as suggested by Mendes et al.5 such that each
rotamer of His, Gln, and Asn is split to two new rotamers, one with
the original torsion values and the other with the terminal � flipped
by 180°. A backbone independent library was used for rotamers of
the first and last residue in the polypeptide chain, or for other
locations where the �- or �-angles are not defined. Following
analysis, a threshold of 0.003 was chosen as the lowest probability
for a rotamer to be included in the search, yielding about 200
rotamers for each backbone conformation (without the threshold
the number was 338). Set2 was used to examine the suitability of
the modified library. It was found that 98% of the �1�2 values are
included. The modified library was refined for aromatic residues
(His, Phe, Trp, and Tyr) and residues with only one side-chain
dihedral angle (Ser, Thr, and Val) by adding conformations �15°
off of the rotamer library values. For the small amino acids this
expansion does not cost much in computational time, while for the
aromatic residues it might be important for prediction accuracy
(due to the rigid planar rings, which cause large spatial displace-
ments from small angle differences). If, during the search, side-
chain clashing was detected for any type of amino acid, this
refinement was included for the �1 and �2 dihedral angles.

Bond distances and angles used to build rotamers were taken
from CHARMM.33

Calculation of Surfaces

Our definition of contacting atoms is illustrated in Figure 1. Atom
a in the protein matrix can have contact with atom b if dab � Ra �
Rb � 2Rw; i.e., the distance separating them is less than the sum of
their van der Waals radii (Ra and Rb) plus two solvent (probe) atom
radii (Rw). Traditionally, Rw is equal to a water molecule radius of
1.4 Å. A modified version of a Voronoi tessellation was used to
calculate contact surface areas between atoms.34 This method
analytically calculates the contact surfaces following projection of
the polyhedra edges on the extended sphere radius (van der Waals
plus solvent atom radii). The solvent-accessible area35 of each
atom is what is left after subtraction of the atomic contacts from
the sphere surface. This procedure was also used to calculate
solvent-accessible surfaces of the side chains in the native struc-
tures.

Atom Types

The protein atom types were divided into eight groups as in
Sobolev et al.19 A pairwise interaction between atoms of different

classes is considered as either favorable (weight of �1) or unfa-
vorable (weight of �1). A description of the classes and the
weights is given in Table 2. Interaction with the solvent was
optimized using a genetic algorithm and a weight of 2 was ob-
tained, as will be described.

Scoring Function

The scoring function for a given side chain conformation takes the
general form of:

Escore � Ecomp � Kvol � Evol � Kprob � Eprob � Ksol � Esol (2)

where

Ecomp � �
a

sc �
b

all

WabSab, (3)

Evol � �
a

sc �
b

all

Vab, (4)

Esol � �
a

sc

ASPaSASa, (5)

Figure 1. Definition of atomic contacts. Atom a is in surface contact
with atom b if the distance between the two is less than the sum of their
van der Waals radii (gray areas) and two solvent-atom radii (white
areas). The contact surface area of atoms a and b (represented by the
thick solid line) depends on the spatial positions of the additional
atoms in contact with both (i.e., atoms c and d). It can be determined
by bisecting the overlap of atoms a and b, a and c, and a and d and
projecting lines from the center of atom a, through the intercepts of
bisects ab with ac and ad, to the edge of the extended sphere of a. The
total surface area of an atom is divided among the contacting atoms
and the solvent-accessible surface (SAS, represented for atom a by the
thick dotted line). SAS is determined by implementing a constrained
Voronoi procedure.34
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and Wab are the binary weights for surface contacts, Sab is the
contact surface of atoms a and b, Vab is the overlapping volume of
atoms a and b, ASPa is an atomic solvation parameter for atom a,
and SASa is the solvent-accessible surface. Eprob is the intraresidue
energy, while the Ks are the coefficients calibrating the relative
contribution of each term. The numeration of a is over the side-
chain heavy atoms excluding C�, while the numeration of b is over
all atoms having contact with side chain atoms. Our scoring
function [eq. (2)] contains three parts corresponding to atom–atom
interactions (first two terms), a torsion term that depends on
dihedral angles (the third term), and a term corresponding to the
hydrophobic (or solvation) effect (forth term). Thus, our function
is structurally similar to potential energy functions for systems
with constant covalent bonds and angles.

Surface Complementarity (Ecomp) and
Solvation (Esol) Terms

For each residue, the complementarity part of the scoring function
is calculated according to eq. (3). Two contacting atoms need to be
separated by at least four covalent bonds as in standard force fields.
It should be noted that the complementarity score for two given
atoms may also be dependent on the position of other atoms in
space, because it depends on the contact surface allocated to all
atoms in contact with a given atom and the solvent. For that
reason, it cannot be calculated by analyzing the coordinates of the
two atoms alone. As a result, we cannot use a sophisticated search
algorithm such as the dead-end elimination36 in combination with
surface complementarity.

A simple solvation term was used based on the SAS [eq. (5)]
and ASPs were optimized, as will be described in following sec-
tions.

Excluded Volume (Evol) Term

This repulsion term is calculated as the volume of overlap of
spheres for two atoms having van der Waals radii Ra and Rb. In our
study, we use an analytical solution to compute the volume overlap
between two atoms a and b as follows:

Vab �
1

3
�ha

2�3Ra � ha� �
1

3
�hb

2�3Rb � hb� (6)

where

ha �
Rb

2 � �d � Ra�
2

2d
, hb �

Ra
2 � �d � Rb�

2

2d
if �d 	 Ra � Rb�,

ha � 0, hb � 0 if �d 
 Ra � Rb�. (7)

where d is the distance between atoms a and b.

Intraresidue Energy (Eprob) Term

The intramolecular energy of the residue is an important determi-
nant of side-chain conformations in proteins.25,37 It could be
considered simply by a standard torsion term. However, with
recently improved and more detailed rotamer libraries, data re-
garding commonality and probabilities of rotamers in native pro-
teins have come into use.15–18 The intraresidue energy term as-
signs a more favorable (smaller) score for rotamers present more
frequently in proteins. We applied here a probabilistic term of the
form

Eprob � Nares � ln�Prot � Nrres� (8)

where Prot is the probability of the rotamer taken from the back-
bone dependent rotamer library of Dunbrack and Cohen,32 Nrres is
the number of entries in the rotamer library for residue type res,
and Nares is the number of flexible bonds of residue type res. This
number might be important in order to fit Eprob with other terms in
eq. (2). The latter act on the atom level and their contribution is
roughly proportional to residue size. Multiplication by Nares makes
Eprob dependent on residue size as well.

Optimization of Parameters Using a Genetic Algorithm

The relative contribution of various terms in the scoring function
was calibrated by implementing a genetic algorithm. The root-
mean-square deviation of side chain atoms between the model and
native structures was minimized. Each fitness evaluation included
modeling one of 2983 side chains in the training set (Set1), while
all others were held fixed in the native conformation. The popu-
lation size was set to 100 individuals, and 150 generations were
simulated. The bounds on the parameter values were: excluded
volume coefficient (Kvol, 0 . . . 1000); solvation coefficient (Ksol,

Table 2. Atom Types and Contact Weights of the Binary-Surface Complementarity Function.a

Atom types I II III IV V VI VII VIII

Hydrophilic (I) � � � � � � � �
Acceptor (II) � � � � � � � �
Donor (III) � � � � � � � �
Hydrophobic (IV) � � � � � � � �
Aromatic (V) � � � � � � � �
Neutral (VI) � � � � � � � �
Neutral donor (VII) � � � � � � � �
Neutral acceptor (VIII) � � � � � � � �

aAdapted from Sobolev et al.19 All contact weights are �1. A designation of “�” represents an
unfavorable interaction and “�,” a favorable one.
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�10 . . . 10); intraresidue energy coefficient (Kprob, �100 . . .0),
and atomic solvation parameters (ASPs, �10 . . . 10).

Iterative Modeling of Multiple Side Chains

In the iterative self-consistent procedure (Fig. 2), the side chains
are modeled in a predetermined order. When a given side chain is
modeled, the remaining side chains are held fixed. All side chains
are positioned once during an iteration of the algorithm. The
procedure is repeated until all side chains converge to the same
conformation or until a predetermined maximum number of iter-
ations are reached.

Such an algorithm can obviously be trapped in local minima.
Two crucial factors will contribute to its performance. The first is
the initial conformations of the side chains, and the second is the
order in which they are modeled. Xiang and Honig12 implemented
their procedure with many different random starting conformations
and chose the protein model with the lowest energy. In their
implementation, the order of modeling was not considered. Here,
we run our procedure once and the initial conformations are built
one after the other using the scoring function. Every side chain is
constructed in the presence of the backbone atoms (including C�),
and all other side chains already built. The order by which the side
chains are initially built is a function of their estimated solvent
exposure. Side chains were sorted by decreasing number of neigh-
boring residues normalized to side chain size, as follows:

Si �
Ni

Li
(9)

where Si is the normalized score of residue i, Ni is the number of
neighbors of residue i, and Li is a characteristic property of each
amino acid type roughly equal to the side chain length in extended
conformation (from the C� to the farthest side-chain atom). Two
residues, i and j, are considered neighbors if the distance between
their C� atoms is smaller than the sum of their lengths Li and Lj

plus two solvent atom radii. The index Si was found to correlate
with the solvent-accessible area (r � �0.68).

After all side chains are initially modeled, the iterative proce-
dure is applied. In each successive iteration, the order in which the
side chains are considered is reversed to reduce the possibility of
being stuck in a local minimum. This was empirically found to
give better results than using an invariant order. The procedure
continues until all side chains have approximately the same con-
formation in two successive iterations, or until a predefined num-
ber of iterations is reached. In the latter case, if the total score is
higher than the penultimate iteration, the algorithm proceeds until
the total energy at the end of an iteration is lower than the total
energy at the end of the previous one.

Stochastic Modeling of Multiple Side Chains

The stochastic method used is schematically described in Figure 3.
This type of algorithm has been referred to as Gibbs sampling or
Heat–Bath algorithm for side chain modeling.7 In the basic re-
peated step, a rotamer of a given side chain is chosen at random
based on a Boltzmann distribution of the energies of all the

Figure 2. Flow chart of the iterative algorithm for concurrent mod-
eling of all side chains. In the first iteration, side chains are modeled
successively in decreasing order of Si score [eq. (9)], in the presence
of the backbone and all previously built side chains. Further iterations
are performed similarly except that the modeling order of side chains
is reversed in each round. Reiteration is continued until each side chain
takes the same conformation in two successive iterations, or until a
predetermined number of iterations is reached.

Figure 3. Flow chart of the stochastic algorithm for modeling all side
chains concurrently. Side chains are initially built by randomly select-
ing conformations from the rotamer library. Side chains are then
modeled in random order (starting from the one with the highest Si

score), the only restriction being that a given side chain is a neighbor
of the previously modeled one. The rotamer chosen at each modeling
step is also selected randomly, but with a probability that is exponen-
tially related to its score [eq. (2)] according to the Boltzman distribu-
tion [eq. (10)]. The number of modeling steps is proportional to the
number of flexible side chains (N). Temperature (T) decreases during
the run. More modeling steps take place at higher temperatures, as
determined by the parameter k.
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rotamers of that side chain, and a time-dependent temperature
parameter T. Initially, the side chains have a random conformation.
A starting residue (in our implementation, that with the highest Si

score) is chosen and modeled, following which the next residue is
chosen at random from its neighbors. Choosing a neighboring
residue of the one modeled in the previous step, results in buried
residues being sampled more often by the algorithm.

During the modeling of a given side chain, each rotamer j has
probability Pj to be accepted, as given by:

Pj �
e�Ej/T

Z
(10)

where

Z � �
j

e�Ej/T (11)

and Ej is the total score of rotamer j. The initial temperature T was
set to 70 K and was scaled by 0.8 every k � N steps, where N is the
total number of flexible residues. The algorithm stops when T � 3.
The value of k decreases gradually (from 12 to 5), such that more
modeling steps take place at higher temperatures.

Evaluation Methods

The percentage of correctly predicted �1 and �1�2 angles are
presented. We consider a correctly predicted angle to be one
differing by less than 40° from the angle in the native structure.
When considering residues with symmetric terminal groups (Asp,
Glu, Phe, and Tyr), or with possibly flipped terminal groups (Asn,
Gln, His), the torsion angle that is closer to the native value is
taken for the angle comparison and the smaller value for RMSD
calculations. The RMSD is calculated for all the protein side chain
heavy atoms. C� atoms were excluded from the calculation. Note
that an overall RMSD of 1.5 Å with inclusion of C� atoms is equal
to about 1.7 Å without C�. The C� atoms were rebuilt by the
programs evaluated and were not considered as part of the back-
bone.

Buried side chains are defined as those with less than 10%
solvent accessibility (solvent radius taken as 1.4 Å), partially
buried side chains as those with 10–50% solvent accessibility and
exposed side chains as those with more than 50% accessibility.

The evaluation of all programs (ours and others) mentioned in
this study was performed using identical evaluation criteria, on the
same protein sets and on the same platform (Pentium III, 850
MHz, 512 Mb).

Results and Discussion

Incorporation of Surface Complementarity and Accessible
Surface in a Scoring Function

We developed a scoring function in the general form of eq. (2) to
predict side-chain conformations. The surface complementarity
term [eq. (3)] is the core of the function. A solvation term [eq. (5)]
was incorporated based on the solvent contact surface area. Sol-
vation is usually not included in side-chain prediction programs
due to the relatively extensive computational time required for its
calculation. In our case, however, it is obtained as a side product
from calculation of the contact surfaces between atoms. An ex-
cluded volume term [eqs. (4) and (6)] for clashing atoms and an
intraresidue energy term [eq. (8)] were also included.

The parameters of the combined function were calibrated be-
ginning with the coefficients of the different terms of the scoring
function [eq. (2)]. The binary pair-wise weight parameters were
applied (Table 2) and the ASPs at this stage were fixed at �1. A
genetic algorithm program was used then to calibrate the coeffi-
cients Kvol, Kprob, and Ksol. The overall RMSD between predicted
and native conformations was optimized for the residues of the
proteins in Set1. During analysis of a given side chain, the other
side chains were held fixed in the native conformation. This
method of evaluation38–40 avoids the combinatorial problem and
the influence of the search procedure. We used the backbone
dependent library of Dunbrack and Cohen32 for the search, with
modifications as described in Methods. The top solutions of the
genetic algorithm all converged to about the same values, allowing

Table 3. Optimization of Atomic Solvation Parameter Values Using a Genetic Algorithm.a

Hydrophilic
(I, II, III)

Hydrophobic
(IV)

Aromatic
(V)

Neutral (VI,
VII, VIII) RMSD

2.91 1.34 2.60 3.39 1.307
2.91 1.02 2.44 3.39 1.307
2.91 1.34 2.44 3.39 1.308
1.65 2.44 2.76 2.44 1.308
1.65 2.44 2.60 2.44 1.308
1.65 2.44 2.44 2.44 1.308
3.23 0.71 2.44 3.23 1.308
1.65 1.97 2.76 2.44 1.309
1.65 1.97 2.60 2.44 1.309
3.23 0.55 2.44 3.23 1.309

aThe eight atom types of Table 2 were clustered into four groups as shown. The 10 most-fit ASP sets
that were generated are presented. Fitness is a function of the root mean square deviation (RMSD)
of the model from the native structure (average RMSD for random ASP values is 1.726 Å).
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us to fix the values of the parameters as Kvol � 70, Kprob � �10
and Ksol � 2.

The solvation term was refined next. Using atomic solvation
parameters for this purpose is well accepted in side chain model-
ing.13,40–42 In some cases it was found that the ASP sets of
Eisenberg and McLachlan24 improved prediction, but this was
demonstrated only on very small samples,41,42 or on well-defined,
exposed residues taken from NMR data.13 Others did not show the
contribution of the ASP sets to the overall performance40 or could
not improve their method using this ASP model.6

Although still popular, a growing body of evidence suggests
that ASP sets derived from physicochemical experiments (e.g.,
refs. 23, 24, and 43) are problematic for molecular modeling of
proteins. Such sets contain both negative and positive ASPs.
Usually the C and S parameters are the only positive ones, while
all the O and N atoms have negative weights. However, uniform
positive values of ASP give better results for protein structure
refinement than physicochemical ASP sets.44 Indeed, when
Schiffer et al.41 combined a solvation model with AMBER force
field and optimized the ASPs to obtain the minimum driving force
for the native structures, they obtained only positive values of
ASPs for N and O (but did not utilize this result). Also, it was
recently shown that positive values for all ASPs are required to
interpret binding free energy of quaternary complexes.45 Likewise,
variable physicochemical ASPs were found to be problematic for
molecular docking46 and for accurate calculation of folding free
energy.47 More recently, it was shown that a “stability scale” for
both hydrophilic and hydrophobic residues correlates well with
average “buried accessible surface,”48 leading to near uniform
ASP values for all atom types. Indeed, using a knowledge-based

distribution of atom–atom and atom–solvent contacts, McConkey
et al.22 has now shown that the interaction with solvent is statis-
tically unfavorable for 165 of 167 atom types in proteins (the
exceptions are the terminal N of lysine and the terminal O of
glutamate). Uniformly positive ASPs are, in fact, consistent with
early studies that found a linear correlation between accessible

Figure 4. The performance of the scoring function (RMSD) vs. the
upper limit of B-factor values. The numbers on the x axis represent the
threshold values for a residue to be included in the evaluation. Con-
tinuous line: all residues. Dotted line: exposed residues only.

Table 4. Scoring Function Performance.a

Amino acid

No. of residues �1 (%) �1�2 (%) RMSD (Å)

Buried All Buried All Buried All Buried All

Arg 17 153 94.1 86.3 88.2 73.2 1.99 2.55
Asn 26 134 100.0 89.6 92.3 72.4 0.52 1.14
Asp 28 157 100.0 90.4 67.9 66.2 0.62 1.09
Cys 36 52 100.0 98.1 100.0 98.1 0.32 0.43
Gln 17 111 100.0 85.6 100.0 73.0 0.54 1.62
Glu 8 142 87.5 78.9 62.5 59.9 1.81 1.85
His 15 57 100.0 96.5 100.0 94.7 0.46 0.96
Ile 108 161 100.0 96.3 94.4 88.2 0.38 0.72
Leu 159 242 96.8 95.5 84.9 82.6 0.86 0.95
Lys 4 156 100.0 84.6 100.0 67.9 0.81 2.03
Met 27 39 96.3 92.3 88.9 82.1 0.80 1.22
Phe 69 106 97.1 98.1 95.7 93.4 0.79 0.71
Ser 56 185 78.6 65.4 78.6 65.4 1.11 1.38
Thr 42 172 97.6 89.0 97.6 89.0 0.43 0.83
Trp 23 49 100.0 100.0 100.0 100.0 0.40 0.40
Tyr 47 96 100.0 96.9 97.9 94.8 0.88 1.12
Val 120 184 95.0 94.0 95.0 94.0 0.63 0.68
Pro 20 142 85.0 80.3 80.0 71.8 0.38 0.46
Total 822 2338
Average 96.1 88.5 90.8 79.2 0.81 1.42

aSet2 was used. The side chains of all residues apart from the one being modeled were held fixed in the native
conformation. buried � buried side chains, all � all side chains.
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surface area and hydrophobicity,49 while reduction of accessible
surface area during folding was almost equal for polar and non-
polar atoms.35

In light of all this, we decided not to adopt an experimental
ASP set from the literature but, instead, to optimize an ASP set for
our specific purpose. Because the coefficient of the complementa-
rity term [Ecomp in eq. (2)] is 1, we set Ksol at this stage also to 1.
This allows direct comparison between the optimized ASPs and

the parameters for the contact surface area [Wab in eq. (3)]. The
number of ASPs was reduced from 8 to 4 by separately grouping
the three hydrophilic and three neutral classes in Table 2. Optimi-
zation of the resulting ASPs produced a small reduction (1.321 to
1.307 Å) in the RMSD of the top solutions. However, there was no
convergence of the ASP values to a single solution (Table 3). We
noticed that all the ASPs had positive values, almost always larger
than 1 (the weight of contacts between chemically noncomplemen-
tary atoms). In terms of contact surface area, intermolecular inter-

Figure 5. Prediction accuracy as a function of the order of modeling
side chains. Side chains were modeled in decreasing (DS) or increas-
ing (IS) order of S scores. (a) �1 prediction accuracy; (b) RMSD of
side chain atoms.

Figure 6. The number of times each side chain is modeled in the
stochastic procedure as a function of its solvent accessibility. At any
given time, the residue to be modeled is randomly chosen from the
neighbors of the previously modeled one. Buried residues (which have
more neighbors) are modeled more often. The number of times each
side chain is modeled is plotted as a function of its solvent accessibility
(correlation coefficient r � �0.57).

Table 5. Contribution of the Scoring Function Terms to the Prediction Accuracy.a

Terms �1 (%) �1�2 (%) RMSD (Å)

Vol Com Sol Int 6–12 Bur
Part
bur Exp All Bur

Part
bur Exp All Bur

Part
bur Exp All

� � � � � 93.4 77.3 66.4 80.5 88.2 63.3 49.7 69.1 0.81 2.03 2.34 1.78
� � � � � 94.0 84.3 67.2 83.3 89.2 73.8 50.2 73.2 0.77 1.61 2.34 1.61
� � � � � 93.5 89.5 71.3 86.0 88.6 77.5 53.3 75.1 0.74 1.24 2.26 1.45
� � � � � 95.0 85.0 74.3 85.9 91.2 73.5 59.2 76.3 0.81 1.75 2.24 1.63
� � � � � 94.1 91.1 71.8 86.9 89.5 80.9 53.8 76.7 0.71 1.15 2.27 1.42
� � � � � 95.5 90.7 78.2 89.1 91.8 80.7 64.4 80.4 0.72 1.20 2.09 1.36
� � � � � 95.5 87.8 76.2 87.5 91.6 77.8 61.6 78.6 0.75 1.49 2.17 1.50
� � � � � 95.2 92.2 78.7 89.6 91.6 82.5 64.7 81.1 0.71 1.12 2.00 1.30
� � � � � 91.3 85.7 68.5 83.0 84.9 72.4 46.4 70.0 0.84 1.60 2.46 1.65
� � � � � 93.2 90.3 76.0 87.5 89.0 79.1 59.0 77.3 0.76 1.17 2.10 1.37

aThe scoring function was tested using different combinations of its components. The volume term of eq. (2) was always
included to avoid atom clashing. The function with traditional 6–12 Lennard–Jones terms was also tested.
� indicates inclusion of the parameter, � indicates exclusion. Abbreviations: Vol � excluded volume, Com �
complementarity term, Sol � solvent accessible surface term, Int � intraresidue energy, bur � buried side chains, part
bur � partially buried side chains, exp � exposed side chains, all � all side chains.
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action is therefore always favorable over interaction with the
solvent. We checked if particular solutions in Table 3 are more
suitable for modeling a specific group of residues (aromatic, polar,
exposed, etc.). We found this not to be the case. Thus, the per-
centage of correctly predicted side chains of different residue types
does not depend on the solution chosen. In summary, we did not
find preferences for solvent interaction for certain atoms types over
others by this procedure. The only general observation is that
strong positive (almost uniform) values are favored for all atom
types for side-chain modeling. We decided to stay with the initial
value of 2 for all the ASPs (while Ksol � 1). Together, the weights

for atomic and solvent contacts favor maximum packing of the
protein. Our scoring function therefore takes the final form of:

Eres � Ecomp � 70 � Evol � 10 � Eprob � 1 � Esol (12)

where Esol is equal to two times the solvent-accessible surface [i.e.,
ASPs in eq. (12) equal 2]. This function includes only three
optimized parameters; attempts at further refinement did not im-
prove the results.

An implicit parameter for both the surface complementarity
and solvation terms is the radius of the solvent (probe) atom (Rw).

Table 6. Performance of Modeling Programs.a

PDB ID

Iterative Stochastic

�1 (%) �1�2 (%) RMSD (Å) �1 (%) �1�2 (%) RMSD (Å)

Bur All Bur All Bur All Bur All Bur All Bur All

Set 2

153l 94.0 82.6 86.0 71.8 0.94 1.91 94.0 83.2 88.0 74.5 0.81 1.51
1ako 89.9 84.6 86.5 73.1 1.34 1.87 94.4 85.0 87.6 71.4 1.00 1.82
1arb 86.8 86.6 85.7 82.7 1.06 1.45 91.2 90.6 89.0 84.2 1.06 1.35
1bj7 93.2 81.5 86.4 71.1 1.48 1.78 93.2 83.0 81.8 71.9 1.55 1.72
1cex 98.1 86.3 94.3 74.0 0.52 1.67 98.1 90.4 98.1 80.8 0.39 1.49
1dhn 96.3 75.2 85.2 63.8 1.08 2.13 92.6 81.0 88.9 68.6 0.86 1.82
1hcl 86.7 77.6 71.1 59.5 1.32 1.90 83.3 75.7 66.6 57.5 1.44 1.98
1koe 92.0 84.0 90.0 76.4 1.01 1.65 92.0 84.0 90.0 77.1 0.70 1.59
1mml 87.9 80.5 81.8 70.6 0.90 1.57 89.4 82.4 81.8 69.7 0.90 1.45
1noa 95.5 78.8 90.9 73.8 0.69 1.10 95.5 80.0 90.9 72.5 0.71 1.18
1thx 97.0 79.4 93.9 70.1 1.11 1.49 100 82.5 97.0 75.3 0.52 1.25
1whi 93.1 82.2 93.1 73.3 0.64 2.05 93.1 80.2 93.1 73.3 0.64 2.15
2cpl 94.0 83.3 92.0 75.8 0.68 1.63 96.0 87.1 90.0 78.0 0.62 1.59
2hvm 93.5 84.2 88.0 76.0 0.77 1.22 93.5 83.7 89.1 76.5 0.75 1.31
2rn2 100 86.6 97.3 76.4 0.95 1.61 97.3 87.4 91.9 74.8 0.78 1.76
ave 93.2 82.2 88.1 72.6 0.97 1.67 93.6 83.7 88.3 73.7 0.85 1.60

Set 3

1e5mA 92.1 85.1 85.7 75.6 1.04 1.67 93.6 84.4 86.4 74.9 0.80 1.66
1fo9 98.3 84.3 87.5 72.4 1.45 1.87 98.3 86.4 90.8 76.9 0.59 1.63
1l3kA 92.3 85.7 92.3 78.6 0.82 1.77 97.4 87.1 97.4 80.0 0.82 1.70
1wer 93.9 78.8 90.8 71.7 1.05 1.86 98.0 80.8 96.9 73.4 0.61 1.69
1ep0A 90.7 80.6 85.2 72.1 1.18 1.76 98.1 81.8 88.9 71.5 0.74 1.78
1ey4A 93.9 79.8 87.9 64.9 0.78 2.01 90.9 80.7 81.8 65.8 0.83 2.01
1fcqA 93.5 81.9 85.0 69.6 0.95 1.91 93.5 83.3 86.0 72.8 0.95 1.76
1tldA 92.6 85.6 88.9 75.6 0.72 1.46 92.6 84.4 92.6 74.4 0.65 1.53
1bkrA 96.6 85.6 89.7 76.3 0.60 1.49 96.6 83.5 89.7 74.2 0.61 1.30
1es9A 92.4 78.7 83.3 69.4 1.90 2.11 93.9 83.1 84.8 72.1 0.91 1.70
1byi 93.7 83.6 90.5 72.9 0.66 1.56 93.7 83.6 90.5 73.4 0.66 1.52
2lisA 100 85.2 86.2 73.9 0.56 2.10 100 84.3 86.2 73.9 0.56 2.09
2bce0 89.4 80.3 83.8 71.8 1.40 1.66 89.9 82.1 83.3 72.7 1.20 1.48
1qgvA 83.8 76.5 78.4 64.3 1.08 2.09 83.8 79.1 78.4 67.8 1.08 1.93
1gsoA 91.8 84.6 83.6 74.4 0.79 1.39 90.2 82.4 83.6 72.8 0.83 1.45
1jb3A 90.0 78.3 86.7 67.8 1.25 2.14 90.0 80.0 90.0 69.6 1.21 2.10
1hztA 85.4 84.0 85.4 72.5 1.47 1.73 90.2 85.5 85.4 73.3 1.07 1.59
1ii5A 92.5 85.0 86.6 78.0 0.81 1.57 92.5 85.0 91.0 80.3 0.69 1.39
1bgf 88.5 77.7 76.9 67.0 2.82 2.03 92.3 75.9 84.6 67.0 1.69 1.94
1ln4A 95.2 90.7 90.5 74.4 0.79 1.71 95.2 90.7 95.2 75.6 0.70 1.70
ave 92.3 82.6 86.2 72.2 1.11 1.79 93.5 83.2 88.2 73.1 0.86 1.70

aSide chains of proteins were modeled concurrently. C� was not included in the RMSD calculation. Abbreviations:
bur � buried side chains, all � all side chains, ave � average.
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During our efforts to improve performance we tested different
values of Rw in the range 0.0–1.8 Å. We found no real difference
in the quality of the prediction when changing this parameter over
entire range. Together with Table 5, these results demonstrate that
surface complementarity does not contribute much to the predic-
tion of buried side chains. This is not surprising, because the main
determinant of core side chains is simply the allowed space, which
is determined by the volume term. For partially buried and ex-
posed side chains, however, we surprisingly found advantage for
Rw in the range of 0.7–0.9 Å. The physical meaning of this is not
clear.

To study the behavior of our function, we calculated the scores
for binary systems of two atoms as a function of interatomic
distance using the parameters obtained for the first two terms in eq.
(12) (corresponding to atom–atom interactions). The minimum
scores are at a distance slightly less than the sum of the van der
Waals radii, similar to that in the Lennard–Jones potential. How-
ever, at short distances, our function is less steep (and therefore
more permissive).

Our scoring function is not presently geared to a direct estima-
tion of free energy. Several physical forces, such as electrostatics,
are not represented accurately enough, and entropy is not consid-
ered at all. Our function is currently applicable for structural
modeling tasks. If desired, another scoring function should be used
for free energy estimation, as in the FlexX docking program.50

The combined scoring function was tested on a set of 15 protein
structures (Set2) by modeling single side chains one at a time, in
the same way as was done with the training set (Set1) during
optimization. For Set2, our prediction was 96.1% accurate for �1

of buried residues and 88.5% for all residues. For �1�2, the
accuracy was 90.8 and 79.5%, respectively, and the RMSDs were
0.80 and 1.42 Å, respectively (Table 4). Similar results were
obtained for the proteins of Set3 (for �1, a prediction accuracy of
95.9% for buried residues and 87.6% for all residues; for �1�2, an
accuracy of 91.9 and 79.0%, respectively, and RMSDs of 0.69 and
1.45 Å, respectively).

The performance of the scoring function was tested separately
for well-defined side chains by considering B-factor values. Pre-
diction accuracy increased when the evaluation was restricted to
residues with lower B-factors (Fig. 4). An improved accuracy is
also observed when checking exposed residues separately (Fig. 4,
dotted line). Therefore, improved accuracy is not a consequence of
an increased fraction of buried residues (which are more correctly
predicted) in the lower B-factor population. This experiment sug-
gests that some of the “error” in side chain placement reflects
flexibility in the positions of the involved residues or uncertainty in
their precise location.

We further checked the contribution of every term in the
scoring function. From Table 5 it is clear that the intraresidue
energy significantly contributes to the prediction of exposed resi-
dues. However, for the partially buried side chains (35% of resi-
dues) the important terms (apart from the excluded volume) are
intraresidue energy, surface complementarity, and interaction with
the solvent, especially the latter. Correct prediction of partially
exposed residues can be seen as the real test of a scoring function
for side chain modeling. For buried residues very simple scoring
functions yield good results,18 while for exposed residues the
prediction is complicated by experimental conditions such as crys-
tal packing and ions concentrations,14 and might at times be

meaningless due to the inherent flexibility of these residues.30,51

Table 5 also compare the results obtained using our surface and
volume terms with the traditional Lennard–Jones potentials for
reflecting van der Walls forces. We constructed this potential to
have its minimum at a distance equal to the sum of the van der
Waals radii. The exact relation between the attractive and the
repulsive terms were optimized, as well as the relative contribution
of the potential to the score. From Table 5 it is apparent that the
surface complementarity and volume terms in the scoring function
[eq. (2)] compensate well for the absence of a distance dependent
term for van der Waals forces. We did not evaluate a classical
torsion term because we used a discrete search procedure in
rotamer space rather than a continuous one in torsion space. Other
traditional energy terms were not evaluated because they have no
simple analogs in our scoring function.

Concurrent Modeling of Multiple Side Chains

We implemented our scoring function in a program that predicts
conformations of several side chains concurrently. Two methods
were applied for this task: a simple iterative self-consistent one
(Sccomp-I), and a stochastic method (Sccomp-S) based on the
Boltzmann distribution (application of the Gibbs sampling algo-
rithm for side-chain modeling).

In the iterative procedure (Fig. 2), residues are individually
modeled one after the other until all � angles of the side chains
being modeled are within 40° of their conformations in the previ-
ous iteration, or until a predetermined maximum number of iter-
ations is reached (see Methods). The initial order in which the side
chains are considered is of importance for the prediction accuracy.
Better results were obtained when side chains with many neigh-
bors (usually buried ones) were modeled first, i.e., in decreasing
order of S scores [eq. (9)]. Figure 5 illustrates the correlation
between prediction accuracy and order in the initial iteration. The
algorithm is reasonably fast, with an average running time of 50 s
for a protein of 200 residues.

In the second procedure (Fig. 3) also, every residue is modeled
while the rest of the protein is held fixed. However, the rotamer
chosen at any given point is according to probabilities derived
from the Boltzmann distribution. The order of the modeling is
stochastic, such that a modeled residue is randomly chosen from
the neighbors of the previous modeled residue. It was expected that
buried residues, with higher density of neighbors in the protein

Figure 7. Accuracy of amino acid prediction. The percent accuracy of
�1 prediction for the different amino acids is shown. All side chains
were modeled concurrently.
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matrix, would be modeled more often, and this is indeed what was
observed (Fig. 6). The conformation of a buried side chain is
strongly dependent on the conformations of its contacting side
chains, and, therefore, a more frequent sampling of these during
the search is desired. The average running time of this algorithm
for a protein of 200 residues is about 12 min.

Performance

The two protocols for side chain modeling were analyzed first with
our own test set. The results are shown in Table 6, Set 3. The
differences in prediction accuracy between the iterative and sto-
chastic protocols are 1–2% for �1 and �1�2 predictions and about
0.1 Å in RMSD. The predictive accuracy for the various amino
acids is shown in Figure 7. Prediction of polar and charged side
chains is clearly inferior to the prediction of hydrophobic and
aromatic ones. This emphasizes the limitations of the scoring
function; specifically, the lack of an electrostatic term as well as a
more accurate solvation model.

To further evaluate performance, we checked our programs
with an additional test set. The results (Table 6, Set217) are very
similar to those obtained with Set3 but with slightly smaller
RMSD. We also used Set2 to compare our programs to the other
recent methods in the field (Table 7). The program of Liang and
Grishim17 (Smol) gave the highest percentage accuracy. Their
scoring function includes electrostatic and desolvation terms that
require explicit positioning of hydrogens and clearly improve the
prediction for polar residues. Smol, however, uses a Monte Carlo
search procedure that takes about 45 min for the average sized
protein of Set2, the longest time of all the procedures investigated.

The program Scap12 employs terms from the CHARMM force
field and an iterative procedure for the search. This program
performs well for buried residues but less so for �1 of all side
chains. The running time was about 12 min, similar to Sccomp-S.
Scap is more advantageous for buried side chains, in part due to its
larger rotamer library. However, for partially buried or exposed
residues the weight of the scoring function is dominant (Table 5)
and the completeness of the library less important (see Fig. 8).
Thus, for these residues Sccomp-S is more advantageous.

Scwrl,18 which employs a simple scoring function using a
backbone-dependent rotamer library, is probably the most popular
program in the field, due to its simplicity, speed, and availability
on the Web. Scwrl often serves as a reference for evaluating side

chain modeling programs.12,16,17,52 The running time on an aver-
age size protein is only few seconds. In our test for Scwrl, we
obtained a predictive accuracy of 92% for �1 of buried residues
and 82% for �1 of all residues. Thus, Sccomp-I is slightly more
accurate than Scwrl for buried (as well as all) residues. This is
especially apparent in the mean RMSD for all residues, which is
about 0.2 Å lower for Sccomp-I than for Scwrl.

To investigate the effect of crystal packing on accuracy of
prediction, the full crystal environment for the proteins of Set3 was
built using the program pdbset from the CCP4 suite.53 Side-chain
conformations of the central protein within the fixed framework of
the other copies with their native structures were then constructed
using Sccomp-I in this environment. The predictive accuracy for
�1 of all residues improved by 1.8%, for �1�2 by 1.9%, and for
RMSD from 1.79 to 1.67 Å. A similar level of improvement was
also found for the truly exposed side chains (those with an acces-
sibility 	0.5 in the crystal environment). However, as the predic-
tive accuracy still remains quite low (73% for �1, 57% for �1�2

Figure 8. Dependency of prediction accuracy on rotamer library size.
The prediction accuracy for rotamers of individual residues in Set1 is
shown. The scale of the x-axis is the threshold probability for inclusion
of a rotamer in the search. It is taken from the rotamer probability
appearing in the backbone-independent rotamer library.32 F, buried
residues; ■, partially buried residues; Œ, exposed residues; �, number
of rotamers remaining as a function of threshold probability.

Table 7. Comparison with Other Side-Chain Modeling Programs.a

Method Execution time

�1 (%) �1�2 (%) RMSD (Å)

Bur All Bur All Bur All

Scwrl18 8 s 92.0 81.8 82.9 69.8 1.10 1.86
Sccomp–iterative(This work) 50 s 93.2 82.2 88.1 72.6 0.97 1.67
Sccomp–stochastic(This work) 12 min 93.6 83.7 88.3 73.7 0.85 1.60
Scap12 12 min 94.9 81.0 89.5 71.3 0.86 1.66
Smol17 45 min 95.6 87.7 89.7 77.6 0.73 1.52

aAll programs were evaluated locally and identically, using Set2, default parameters, and a PentiumIII, 850 MHz, 512
Mb computer. C� was not included in the RMSD calculation. Abbreviations: bur � buried side chains, all � all side
chains.

722 Eyal et al. • Vol. 25, No. 5 • Journal of Computational Chemistry



and 2.2 Å for RMSD), crystal packing is clearly not the major
obstacle to accurate prediction of truly exposed side chains.

Some Observations Regarding Side-Chain Modeling

It was recently shown that the use of exact native distances and
angles improves modeling.12 We specifically noticed that although
the position of the C� atom is essentially determined by the
backbone, the small deviations between the standard parameters
and the native parameters are often sufficient to cause a non-
negligible shift in the entire side-chain position. This is demon-
strated in Table 8 for two different modeling methods, and em-
phasizes again the sensitivity of side-chain placement on precise
backbone structure. One obvious consequence is that whenever the
exact coordinates of C� atoms are known they should be used and
should not be rebuilt.

A threshold of 0.003 for the probability of a rotamer to be
included in the search was used throughout this study. At this
level, about 60% of the rotamers of the full library are retained.
Figure 8 describes the general influence of library size on overall
modeling accuracy. For the 0.003 threshold, there is hardly any
loss of accuracy. In general, accuracy of prediction (RMSD)
declined slowly with size reduction. The decline was the steepest
for buried residues and the shallowest for exposed ones. Thus,
buried residues adopt uncommon conformations more often, prob-
ably because they are more frequently subjected to interactions
with other residues.

Conclusions

We presented here a side-chain modeling method that focuses on
the scoring function rather than the searching procedure. The
combination of weighted contact surface areas and solvent-acces-
sible surface account for van der Waals forces and solvation free
energy. The scoring function contributes especially to the model-
ing of side chains that are not totally buried. For buried residues,
simple scoring functions can do well.9,18 However, buried residues
are more sensitive to the completeness of the rotamer library used
for the search. Regarding atomic solvation parameters, large, pos-
itive values yield the most accurate predictions in terms of RMSD.
The differential between the atomic solvation parameters and the
contact surface parameters between all atom types should be
positive. This differential might reflect the driving force for max-
imizing packing of the protein.

Software Availability

The Sccomp-S and Sccomp-I programs are available for Unix/
Linux and Mac OX platforms. The programs can be accessed
through the Web at (http://sgedg.weizmann.ac.il/sccomp.html).
They can be used to model all, or a defined set of, the side chains
in a protein as well as any number of user-generated changes
(mutations). Sccomp can also employ a template PDB to place
side-chain conformations at conserved positions and model the
remaining ones.
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