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1 Abstract

Recognizing specific spatiotemporal patterns of activity, which take place at

timescales much larger than the synaptic transmission and membrane time con-

stants, is a demand from the nervous system exemplified, for instance, by auditory

processing. We consider the total synaptic input that a single read-out neuron

receives upon presentation of spatiotemporal spiking input patterns. Relying on

the monotonic relation between the mean and the variance of a neuron’s input

current and its spiking output, we derive learning rules that increase the variance

of the input current evoked by learned patterns relative to that obtained from

random background patterns. We demonstrate that the model can successfully

recognize a large number of patterns, and exhibits a slow deterioration in per-

formance with increasing number of learned patterns. In addition, robustness to

time warping of the input patterns is revealed to be an emergent property of the

model. Using a leaky Integrate and Fire realization of the read-out neuron, we

demonstrate that the above results also apply when considering spiking output.
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2 Introduction

Recognizing the spoken word “Recognize” presents no particular problem for

most people, and yet the underlying computation our nervous system has to

perform is far from trivial. The stimulus presented to the auditory system can be

viewed as a pattern of energy changes on different frequency bands over a period

of several hundred milliseconds. This timescale should be contrasted with the

membrane and synaptic transmission time constants of the individual neurons,

which are at least an order of magnitude smaller. The auditory modality is not the

only one concerned with the recognition of spatiotemporal patterns of activity –

reading Braille and understanding sign language are among the exemplars of this

rule. Songbirds provide an experimentally accessible model system to study this

ability, where Margoliash and Konishi (1985) showed that specific learned (bird’s

own) songs elicit a higher neuronal response than non-learned songs with similar

statistics (same dialect). The representation of external stimuli in the brain

is a spatiotemporal pattern of spikes (Rieke, Warland, Steveninck, & Bialek,

1997). Experiments on many different systems demonstrated a high precision

spiking response to dynamic stimuli, thereby presenting a spatiotemporal pattern

of spikes to the next level in the hierarchy (Aertsen, Smolders, & Johannesma,

1979; Berry, Warland, & Meister, 1997; Uzzell & Chichilnisky, 2004; Bair & Koch,

1996). These experiments motivated us to limit the current work to the study of

spiking patterns.

The computational task at hand can be formulated in the following way:

given the statistical ensemble of all possible spatiotemporal spiking patterns, a

randomly chosen specific finite subset is designated as learned patterns, while
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the remaining possible patterns are termed background patterns. The task is to

build a model that recognizes a learned pattern as a familiar one by producing a

larger output when presented with it, compared to when presented with a typical

background pattern. The model therefore reduces the high dimensional input to

a one dimensional output. We emphasize that in the task that we consider in this

paper, the selected group of learned patterns is to be distinguished from infintely

many other random patterns, as opposed to the task of classification where two

(or more) sets of selected patterns are to be distinguished between each other.

Several network models were proposed to address this task. Hopfield and

Brody (2001) introduced a network of Integrate and Fire neurons capable of rec-

ognizing spoken words, encoded as a spatiotemporal pattern of spikes, irrespective

of time warp effects. Jin (2004) used a spiking neural network to implement a

synfire chain which only responds to specific spatiotemporal sequences of spikes,

regardless of variations in the intervals between spikes.

Although the actual biological solution probably includes a network of neu-

rons, there is an advantage in modeling the same task with a single neuron. Single

neuron models are usually more amenable to analytic treatment, thereby facili-

tating the understanding of the model’s mechanisms. A well known single neuron

model which performs classification is the Perceptron (Minsky & Papert, 1969).

It might seem that the recognition problem for spatio-temporal spike patterns

can be reduced to it by a simple binning over time, in which the instantaneous

spatial patterns of each time bin of each learned pattern are all considered as

separate input patterns for a normal Perceptron. This, however, is misleading

as spatiotemporal patterns cannot be shuffled over time without destroying their

temporal information, while binned patterns contain no temporal information to
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start with. Bressloff and Taylor (1992) introduced a two layer model of time-

summating neurons, which can be viewed as a discrete-time single neuron model

with an exponentially decaying response function for the inputs. This model

solves the first problem mentioned above by adding the temporal memory of the

response function. While having an architecture similar to ours, the task it per-

forms is different – the mapping of one spatiotemporal pattern to another. Such

a mapping task neither necessitates integration of the input over time, nor does it

reduce the dimensionality of the input. Hence the analysis performed there does

not apply to our case.

In this Letter, we consider the input current to a single read-out neuron,

receiving a spatiotemporal pattern of spikes through synaptic connections. The-

oretical results show that the firing rate of an Integrate and Fire model neuron

is a monotonic function of both the mean and the variance of the input current

(Tuckwell, 1988). Rauch, La Camera, Luscher, Senn, and Fusi (2003) demon-

strated experimentally the same behavior in vitro by using in vivo-like current

injections to neocortical pyramidal neurons. It is important to note that the

variance referred to in this work is the variance over time, and not the variance

over space referred to in other works (see e.g., Silberberg, Bethge, Markram,

Pawelzik, & Tsodyks, 2004). The proposed framework, along with the above

results, allows us to derive learning rules for the synaptic weights, independently

of the particular response properties of the read-out neuron. We then use these

rules in computer simulations to illustrate and quantify the model’s ability to

recognize spatiotemporal patterns.
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3 Methods

3.1 Description of the Model

Our model (Figure 1A) consists of a single read-out neuron receiving N afferent

spike trains within a fixed time window T . Each spike contributes a synaptic

current with an initial amplitude Wi depending on the synapse, and an exponen-

tial decay with a synaptic time constant τS. The total synaptic current is the

input current to the neuron. The synaptic weights are normalized according to

∑N
i=1

W 2

i = 1, and we assume T ≫ τS.

We chose input patterns where each of the N neurons fire exactly n spikes,

enabling the precise temporal information to provide the information for recog-

nition. For each learned pattern µ ∈ {1, . . . , p}, each neuron i ∈ {1, . . . , N}

fires spike number k ∈ {1, . . . , n} at time tµi,k ∈ [0, T ]. An input pattern,

tµ =
{
tµi,k

}N,n

i=1,k=1
, is therefore defined as a fixed realization of spike times drawn

from a common probability distribution P (t), where each ti,k is an independent

random variable distributed uniformly in [0, T ]. (Figure 1B).

The input current Iµ(t), upon presentation of pattern µ is determined accord-

ing to:

Iµ(t) =
N∑

i

WiI
µ
i (t)

τS İµ
i (t) = −Iµ

i (t) + ξµ
i (t)

ξµ
i (t) =

n∑

k=1

δ(t − tµi,k) (1)

Here Iµ
i (t) are normalized synaptic currents, resulting from the spike train of
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Figure 1: The model and sample input. (A) The components of the model.
A spatiotemporal input pattern ξµ

i (t) is fed via synapses to a read-out neuron.
Each pre synaptic spike from neuron i contributes a decaying exponential with
time constant τS and initial height Wi to the input current. (B) A typical input
pattern, each dot represents a spike. (C) Normalized synaptic currents (W = 1)
for 5 input neurons (arbitrary units).

a single input neuron, with the synaptic weights factored out (Figure 1C).

The following Leaky Integrate and Fire model (Lapicque, 1907; Tuckwell,

1988) will be used for an illustration of a typical read-out neuron:
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τmV̇ = −V + I (2)

Where I is the input current, and V the membrane potential. Once V reaches

a threshold, an output spike is generated, and V is immediately set to a constant

reset value. We omitted a refractory period in this model, since the output rates

are not high.

4 Results

4.1 Moments of the Input Current

As discussed in the Introduction, we focus our attention on the mean and variance

of the input current to the neuron upon presentation of an input pattern. In doing

so, we are relying on the monotonic relations between these values and the spiking

output of the read-out neuron.

The mean input current upon presentation of pattern µ (assuming T ≫ τS) is

computed (Appendix A) to be Iµ = τS

T

∑N
i=1

Win (f = 1

T

∫ T
0

fdt). Since there is

no pattern specific information contained in the mean current, it cannot be used

for recognition. We therefore consider the variance of the input current to the

read-out neuron upon presentation of pattern µ (abbreviated: variance of pattern

µ), and calculate it to be

V ar(Iµ)
def
= (Iµ)2 −

(
Iµ

)2

= WT CµW, (3)
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where

Cµ
ij = Ĩµ

i Ĩµ
j =

τS

2T

n∑

ki,kj=1

e
−

∣∣∣tµi,ki
−t

µ

j,kj

∣∣∣
τS −

(
nτS

T

)2

Ĩµ
i

def
= Iµ

i − Iµ
i (4)

We see that the variance depends on the matrix Cµ which is the temporal

covariance matrix of the normalized synaptic currents (see figure 1C) resulting

from presentation of pattern µ. The ijth element of Cµ can be described as

counting the fluctuations in the number of coincidences between pattern µ’s spike

trains i and j, with a temporal resolution of τS.

Our aim is to maximize the variance for all learned patterns, leading to the

cost function −∑
µ V ar(Iµ). This is not a priori the best choice for a cost function,

as different functions can perhaps take into account the spread of variances for

the different patterns, but it is the most natural one. Our problem is therefore

to maximize WT CW (see equation 3), where C =
∑

µ Cµ, with the constraint

∑N
i=1

W 2

i = 1.

4.2 Derivation of Learning Rules

The solution to the maximization problem is known to be the leading eigenvector

of C, however, we are also interested in deriving learning rules for W. By per-

forming stochastic projected gradient descent (Kelley, 1962) on the cost function

with the norm constraint on W, we derive the following rule:
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Ẇi(t) = η(t)
[
Ĩµ(t)

(
Ĩµ
i (t) − Ĩµ(t)Wi(t)

)]
, (5)

which is similar to the online Oja’s rule (Oja, 1982), with the input vector com-

posed of the instantaneous normalized synaptic currents, and the output being

the total input current to the neuron. This is to be expected since the optimal

W is the leading eigenvector of the covariance matrix of the normalized synaptic

currents.

Since Oja’s rule requires many iterations to converge, it is of interest to also

look for a “one shot” learning rule. We construct a correlation based rule, by

using the coincidences between the different inputs:

Wi = κ
N∑

j=1

Cij, (6)

with κ a normalization factor.

Figure 2 demonstrates the convergence of Oja’s rule to the optimal set of

weights W. It can also be seen that the correlation rule is a step in the right

direction, though suboptimal. We also verified that the correlation between the

leading eigenvector and the weight vector resulting from Oja’s rule converges to

1, ensuring that the convergence is in the weights, and not only in performance.

9



0 20 40 60 80 100 120 140

0.05

0.1

0.15

0.2

A
v
er

ag
e 

v
ar

ia
n
ce

 o
f

 l
ea

rn
ed

 p
at

te
rn

s

Leading eigenvector

Correlation
Background
Oja

0

Figure 2: Convergence of Oja’s rule. The average variance of 5 learned patterns.
Oja’s rule starts at the variance of the background patterns, but quickly converges
to the upper limit defined by the leading eigenvector of C. The correlation rule
can be seen to be better than the background, but suboptimal. Oja learning step
declined with iterations according to ηi = 0.02/(1 + ⌈i/5⌉) (see equation 5).

4.3 Simulation Results

The main goal of the simulations was to assess the performance of the model for

an increasing number of learned patterns. Unless otherwise stated, the parameter

values in all simulations were N = 400 inputs, T = 250 msec, n = 5 spikes, τS = 3

msec. All numerical simulations were performed in MATLAB. As explained in

the Methods, we compare the input current variance for learned and background

patterns.

As shown earlier, the Oja learning rule converges to the leading eigenvector

of the matrix C (see figure 2), and we therefore used the MATLAB eig function

instead of applying the learning rule in all simulations. An obvious exception is

the illustration of convergence for the Oja rule.

Figure 3A shows that both rules lead to higher input variances for the learned

patterns relative to the background patterns and, as expected, the Oja rule per-

forms better. This is also illustrated for a specific pair of patterns in Figure 3B,
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Figure 3: Simulation results for recognition. (A,B) Input current to the read-out
neuron. note that in (B) the mean current for the correlation rule is larger than
that of the Oja rule, but there is no difference in mean between learned and
background patterns. (C,D) Membrane potential and spike output for the Leaky
Integrate and Fire read-out neuron with τm = 10 msec and threshold of 2.6 and
6.5 for Oja and correlation rules respectively.

where the difference in variances is evident. Although we took a neural-model

independent approach, we illustrate with a specific realization of the read-out
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neuron – a Leaky Integrate and Fire model (see Methods and equation 2) – that

the difference in the input variance can be used to elicit pattern specific spiking

response (Figure 3C,D).

In order to quantify the performance of the model, we defined the probability

for false alarm (Figure 4A) as the probability of classifying a background pat-

tern as a learned one, if a classification threshold is put at the variance of the

worst (or 10th percentile) learned pattern variance. Probability for false alarm

was calculated for each condition by creating p learned patterns, choosing the

appropriate (Oja or correlation) weights and calculating the variance of learned

patterns. Then an additional 500 patterns were generated to estimate the dis-

tribution of background variances for each set of weights. The fraction of back-

ground variances above the minimal (or 10th percentile) learned pattern variance

was calculated. The probability for false alarm was estimated as the mean of

repeating this process 50 times. Figure 4B shows that for a small number of pat-

terns, both learning rules perform quite well. However as the number of patterns

increases, the correlation rule quickly deteriorates, while the Oja rule exhibits a

much later and slower decline in performance.
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Figure 4: Quantification of the model’s performance. (A) The estimation of prob-
ability for false alarm. 60 patterns were learned, and their variances plotted (see
dots at the bottom of the figure). The variances of 500 background patterns were
used to estimate their distribution. The results of choosing different recognition
thresholds are shown. (B,C) Probability for False Alarm as a function of the
number of learned patterns for 0% (B) and 10% (C) miss. Notice that the X axis
is in log-scale, illustrating the slow degradation in performance. Values of 0 and
1 are actually < 0.001 and > 0.999 respectively due to the finite sample used to
estimate the background variance distribution. Errorbars are smaller than the
markers.
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Since the matrix C depends on the number and temporal precision of the

coincidences in the input, and not on their exact location in time (see equation

4), we expected that the model’s performance would be robust to time warp

effects (Figure 5B). To quantify this robustness, a set of 20 patterns was learned to

obtain the synaptic weights W. Warped versions of both learned and background

patterns were formed by setting tµ → αtµ, T → αT . The original weights were

then used to calculate the variance of the warped versions and thus determine

the probability for false alarm. Note that this warp changes both the firing rate,

and the average pattern variance, resulting in a different threshold for each α.

A biological realization of this dynamic threshold can use the firing rate as a

plausible tuning signal. Figure 5A shows that indeed there is a large plateu

indicating a small decrease in performance for a large range of expansion or

contraction of the patterns.
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4.4 Capacity Estimate

The performance results presented in the previous section are based on numerical

simulations. In order to get a rouch analytical estimate of the capacity, we first

approximate the input spikes as poisson trains to facilitate calculations. We then

compare the variance of a random pattern to that obtained by the correlation rule.

The capacitance will be defined as the limit where the two variances coincide.

Since the Cµ matrices depend on coincidences with a temporal resolution of τS,

we approximate the normalized synaptic currents by using independent random

binary variables xµ
it:

xµ
it =

1√
2





−nτS

T
, with probability 1 − nτS

T

1 − nτS

T
, with probability nτS

T

(7)

< x > = 0 (8)

< x2 > =
nτS

2T
(9)

< xm > ∼= nτS

2m/2T
, m > 1 (10)

Cµ
ij =

τS

T

T/τS∑

t=0

xµ
itx

µ
jt, (11)

where < f(t) >=
∫

fdP (t).

For a background pattern {xit}, the W ’s and the xit’s are independent vari-

ables, since the W ’s are determined by the learned patterns. Thus the variance

of a background pattern is given by
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< V arbg > =
N∑

i,j=1

WiWj
τS

T

T/τS∑

t=0

< xitxjt >

=
N∑

i=1

W 2

i < x2 >

= < x2 > =
nτS

2T
(12)

For the Correlation rule, the synaptic weights are given by:

Wi = κ
N∑

j=1

Cij

=
p∑

µ=1

N∑

j=1

τS

T

T/τS∑

t=0

xµ
itx

µ
jt. (13)

We find κ from the normalization contraint:

1 = <
N∑

i=1

W 2

i >

= κ2

(
τS

T

)2 p∑

µ,ν=1

N∑

i,j,k=1

T/τS∑

t,s=0

< xµ
itx

µ
jtx

ν
isx

ν
ks >

=

[
κ2 < x4 >

(
Np

T/τS

)
+ < x2 >2

[
Np2 +

N2p

T/τS

− 2

(
Np

T/τS

)]]

∼= κ2
Np

4T/τS

[
(N − 2)n

T/τS

+ np + 1

]
. (14)

The variance of pattern µ can now be estimated as
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< V arCorr(µ) > = κ2

(
τS

T

)3 p∑

η,ν=1

N∑

i,j,k,l=1

T/τS∑

t,s,v=0

< xµ
itx

µ
jtx

ν
isx

ν
ksx

η
jvx

η
lv >

= κ2
nNpτS

8T
[1 − 8nτS/T + 3np − 6n2pτS/T +

7n2τ 2

S/T 2 + n2p2 + 5nNτS/T − 6n2Nτ 2

S/T 2 +

3n2NpτS/T + n2N2τ 2

S/T 2]

∼= τSn

2T




(
N

pT/τS

)2

n +
(

N
pT/τS

)
(3n + O(1)) + n + O(1)

(
N

pT/τS

)
n + n + O(1)


(15)

=





nτS

2T

(
N

pT/τS

)
, N ≫ p T

τS

nτS

2T
(1 + O(1)) , N ≪ p T

τS

(16)

Thus we see that unless N ≫ p T
τS

, the variance of the learned patterns is

similar to that of the background ones, i.e., they cannot be successfully recognized.

We conclude that the maximal number of patterns that can be recognized in the

network with a correlation learning rule is on the order of NτS/T . As we showed

in the previous section, the performance of the Oja rule is superior to that of the

correlation rule, but we do not have analytical estimates for its capacity.

5 Discussion

By considering the input current to the read-out neuron as the model’s output,

we were able to derive learning rules which are independent of a particular re-

sponse function of that neuron. These rules enabled recognition of a large number

of spatiotemporal spiking patterns by a single neuron. An emergent property of

the model, of particular importance when considering speech recognition applica-
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tions, is robustness of the recognition to time warping of the input patterns. We

illustrated that these model-independent rules are applicable to specific spiking

models by showing pattern recognition by a leaky Integrate and Fire neuron.

A biological realization of the proposed learning rules requires plasticity to

be induced as a function of the input to the neuron, without an explicit role for

post-synaptic spikes. While at odds with the standard plasticity rules (Abbott

& Nelson, 2000), there are some experimental indications that such mechanisms

exist. Sjostrom, Turrigiano, and Nelson (2004) used a long term depression pro-

tocol in which the post synaptic cell is depolarized, but does not generate action

potentials. Non-linear effects in the dendrites, such as NMDA spikes (Schiller,

Major, Koester, & Schiller, 2000), can provide a mechanism for coincidence de-

tection. It remains a challenge to see whether our proposed rules are compatible

with those and similar mechanisms.

Although our model was defined as a single neuron receiving spike trains, the

same framework is applicable for any linear summation of time-decaying events.

One alternative realization could be using bursts of spikes as the elementary

input events, while still converging on a single read-out neuron. This realization

is in accord with experimental findings in rabbit retinal ganglion cells showing

temporal accuracy of bursts in response to visual stimuli (Berry et al., 1997). A

more general realization is an array of different local networks of neurons firing

a spatiotemporal pattern of population spikes. The read-out neuron in this case

can be replaced by a single read-out network, where the fraction of active cells

stands for the magnitude of the input current.

The process of recognition entails several stages of processing, of which our

model is but one. As such, our model does not address all the different aspects

19



associated with recognition. For example, if the spike pattern is reversed, our

model, which is sensitive to coincidences and not to directionality, will recognize

the reversed pattern as if it was the original. Yet we know from everyday experi-

ence that reversed words sound completely different. A possible solution to this

problem lies in the transformation between the sensory stimulus and the spike

train received by our model, which is not the immediate recipient of the sensory

data. Since the transformation is not a simple linear one, time-reversal of the

stimulus will, in general, not lead to time reversal of the spike train associated

with this stimulus.

Finally, we present some directions for future work. The performance of the

model was quantified by defining the probability for a false alarm (incorrect identi-

fication of a background pattern as a learned one). Computer simulations showed

a very slow degradation in the model’s performance when the number of learned

patterns increased. These results, however, are numerical, and as such sample

only a small volume of the parameter space. A more complete understanding of

the model’s behavior could be achieved by analytical estimation of this perfor-

mance, which remains a challenge for a future study.

An emergent feature of the model, which is of great ecological significance, is

robustness to time warping of the input patterns. There are, however, a variety

of other perturbations to which recognition should be robust. These include

background noise, probabilistic neurotransmitter release, and jitter in the spike

timing. The robustness of the model to these perturbations was not addressed in

this study.
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A Derivation of the Moments of the Input Cur-

rent

Starting from equation 1, we calculate the normalized synaptic currents:

Iµ
i (t) =

n∑

k=1

Θ(t − tµi,k)e
−

t−t
µ

i,k

τS , (17)

where Θ is the Heaviside step function.

We can now calculate the moments (f = 1

T

∫ T
0

fdt) of the input current upon

presentation of pattern µ (assuming T ≫ τS):

Iµ
i =

nτS

T
(18)

Iµ =
τS

T
n

N∑

i=1

Wi. (19)

The variance of the input current can be calculated as follows:

Iµ
i Iµ

i =
n∑

ki,kj=1

τS

2T
e
−

∣∣∣tµi,ki
−t

µ

j,kj

∣∣∣
τS (20)

(Iµ)2 =
N∑

i,j=1

WiWjI
µ
i Iµ

i (21)

V ar(Iµ)
def
= (Iµ)2 −

(
Iµ

)2

(22)

=
N∑

i,j=1

WiWj

[
Iµ
i Iµ

i − Iµ
i Iµ

i

]
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=
N∑

i,j=1

WiWj

[
Ĩµ
i Ĩµ

i

]

def
=

N∑

i,j=1

WiWjC
µ
ij

= WT CµW,

where

Cµ
ij = Ĩµ

i Ĩµ
j =

τS

2T

n∑

ki,kj=1

e
−

∣∣∣tµi,ki
−t

µ

j,kj

∣∣∣
τS −

(
nτS

T

)2

Ĩµ
i

def
= Iµ

i − Iµ
i (23)
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